

November 21, 2014 Project No. 00133805.000A

Ms. Josephine Gonzalez Los Angeles Department of Water and Power 111 North Hope Street, Room 1044 Los Angeles, California 90012

**Subject:** Phase II Environmental Site Assessment Report

Former Figueroa Pump Station

5800 South Figueroa Street, Los Angeles, California

Agreement 47051-2, Site Investigation and Remediation Services

Dear Ms. Gonzalez:

Kleinfelder is pleased to present this Phase II Environmental Site Assessment (ESA) Report documenting soil assessment activities performed in the area of a previously removed fuel reservoir at the former Figueroa Pump Station (FPS), which is owned by the City of Los Angeles Department of Water and Power (LADWP). The former FPS is located at 5800 South Figueroa Street, Los Angeles, California (see Plate 1), and is referred to herein as the Site.

The assessment was completed pursuant to and in accordance with Kleinfelder's Proposal Number 117377/RIV13P0241, issued to LADWP on April 12, 2013. This report presents the methodology, analytical results, and conclusions pertaining to soil sampling activities performed at the Site between May 13 and 20, 2013.

The objective of the environmental scope of services discussed herein was to assess the potential presence, nature, and extent of hazardous substances in soil at the area of the removed fuel reservoir.

In summary, based on Kleinfelder's environmental contaminant evaluation for the soil samples collected for this assessment, soils at the seven sampled locations are not considered to pose a threat to human health and/or the environment.

The remainder of this report provides a summary of background information, further discusses the scope of the assessment activities, presents the analytical results, and summarizes our evaluation and conclusions.

### SITE DESCRIPTION AND BACKGROUND INFORMATION

The Site is an approximately 20,300-square foot, presently vacant lot bound by South Figueroa Street to the west, West 58<sup>th</sup> Street to the north, residences to the east, and a railroad easement and West Slauson Avenue to the south.

Based on information provided in a report of a Phase I ESA of the Site performed by Dames & Moore (Dames & Moore, 1999), LADWP operated a pump station at the Site from approximately 1908 to 1959. During that time, the Site contained two pumps, a boiler, a 175,000-gallon underground water reservoir, and an underground fuel reservoir with a capacity of 874 barrels. The fuel reservoir was supplied by a conveyance line with a fill port situated adjacent to the railroad located directly south of the Site. In 1959, the pump station was removed, the reservoir's supply piping was capped, and the reservoirs were backfilled with unspecified material.

A report of a Phase II ESA performed at the Site by Parsons, Inc. (Parsons, 2004) was reviewed by Kleinfelder and indicates 12 exploratory soil bores (SB-1 through SB-12) were drilled and sampled on August 5, 2003. A plan showing historical soil bore locations is presented as Plate 2. The bores were advanced to a depth of approximately 5 feet below ground surface (bgs), except for Bore SB-8, which was advanced to approximately 10 feet bgs at a location within the footprint of the filled-in fuel reservoir. Soil samples were collected at approximate depths of 1 foot, 3 feet. 5 feet, and 10 feet bgs. The samples were analyzed for moisture content; petroleum hydrocarbon compounds as gasoline and diesel fuel; motor oil; the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, ortho-xylene (o-xylene), and meta- and para-xylenes (m-, p-xylenes); and the metals arsenic, lead, and mercury. The historical analytical data are summarized in Tables 1 and 2. Based on the results, Parsons, Inc. concluded the only identified recognized environmental condition was lead-impacted soil (although the data indicate soil containing hydrocarbon concentrations above 1,000 milligrams per kilogram [mg/kg] was encountered at several of the bore locations, including Bores SB-3, SB-4, and SB-6 through SB-8). Concentrations of total lead detected in soil samples from four of the bores (SB-3, SB-4, SB-6, and SB-8) exceeded the then-applicable residential preliminary remediation goal (PRG) for lead of 150 mg/kg. However, none of the samples contained concentrations exceeding the lead industrial PRG of 750 mg/kg applicable at the time. In addition, the report indicated discolored soils and a potential part of the former fuel reservoir structure were encountered during the investigation, and it was concluded they could pose a concern during future Site construction work.

Other limited, unpublished records provided to Kleinfelder by LADWP indicate that on August 11, 2005, LADWP advanced and sampled 15 additional exploratory bores (B-13 through B-27) at the Site to approximate depths ranging from 3 feet to 10 feet bgs. These approximate bore locations are also shown on Plate 2. Bores B-13 through B-16 were advanced at step-out locations around Bore SB-3; Bores B-17 through B-20 were advanced at step-out locations around Bore SB-4; and Bores B-23 through B-26 were advanced at step-out locations around Bore SB-6. Bore B-21 was located within the

footprint of the former fuel reservoir; Bore B-22 was located within the footprint of the former pump station; and Bore B-27 was located within the footprint of the former water tank. Soil samples from the 15 bores were analyzed for total recoverable petroleum hydrocarbons (TRPH) and California Code of Regulations (CCR) Title 22 Metals (including soluble metals as warranted based on the results of the total metals analyses). In addition, selected soil samples were analyzed for hydrocarbons including diesel-range organics (DRO) having a carbon range of C<sub>10</sub> through C<sub>28</sub>, and total extractable petroleum hydrocarbons (TEPH), with a carbon range of C<sub>9</sub> through C<sub>36</sub>. These historical soil analytical data are summarized in Tables 1 through 3. Total lead concentrations of shallow soil samples from several locations across the Site exceeded the residential soil PRG of 130 mg/kg that was applicable in 2005. Additionally, soluble lead concentrations of shallow soil samples from several locations exceeded the CCR Title 22 Soluble Threshold Limit Concentration for lead of 5 milligrams per liter. Certain soil samples collected from Bores B-13 through B-17, B-20, B-21, B-23, B-25, and B-27 contained TRPH concentrations above 1,000 mg/kg. Most of these soil samples were collected from depths of 5 feet bgs or shallower, with the exception of samples collected from depths of approximately 9 feet to 10 feet bgs in Bores B-13 (advanced in the area of the former water tank), B-20 (advanced approximately 40 feet west of the former fuel reservoir, toward the southwest corner of the Site), and B-21 (advanced at the location of the former fuel reservoir).

Remedial activities were subsequently performed at the Site by LADWP in June and July of 2009, at which time petroleum-impacted soil was removed by excavating within the approximate footprint of the former fuel reservoir. On June 23, 2009, during the remedial excavation work, LADWP collected a sample of a tar-like substance and submitted it for analysis of polychlorinated biphenyls (PCBs), CCR Title 22 Metals, and hydrocarbon-type identification. Kleinfelder understands this sample was a "grab" sample collected from the approximate elevation of the bottom of the fuel reservoir. The analytical results indicated the sample contained diesel-range hydrocarbons and did not contain detected PCBs. Metals results indicated 10 of the 17 CCR Title 22 Metals were detected, including antimony (15.7 J mg/kg, where the "J" qualifier indicates a trace concentration above the method detection limit [MDL] but below the reporting limit [RL]), barium (9.5 J mg/kg), beryllium (0.095 J mg/kg), total chromium (1.3 J mg/kg), copper (3.6 J mg/kg), lead (47.3 mg/kg), nickel (21.9 mg/kg), selenium (5.6 J mg/kg), vanadium (20.5 mg/kg), and zinc (99.0 mg/kg).

The excavation was continued to an approximate depth of 17 feet bgs, but then stopped before complete removal of petroleum-impacted soils due to slope stability concerns associated with the nearby railroad right-of-way adjoining to the south of the Site. On July 8, 2009, LADWP collected a soil sample that Kleinfelder understands came from the bottom of the excavation, below the vicinity of what would have been the western edge of the former fuel reservoir, and submitted the sample for analysis of TRPH, gasoline-range organics (GRO), DRO, motor oil, and full-scan VOCs. A summary of the analytical results is included in Table 1. The soil sample contained a TRPH concentration of 70,100 mg/kg, a GRO concentration of 29.2 mg/kg, and a DRO concentration of 24,000 mg/kg, but it did not contain detected motor oil or VOCs.

Following the soil removal activities, LADWP reportedly backfilled the excavation with slurry up to a depth of approximately 4 feet bgs.

### SCOPE OF SERVICES

Kleinfelder's services included the collection and analysis of soil samples from seven hollow-stem auger bores (KLF-1 through KLF-7) at the locations shown on Plate 3. The field activities were performed between May 13 and 20, 2013. Each of the bore locations was selected by Kleinfelder in consultation with LADWP staff. The services provided by Kleinfelder included the activities discussed below.

# **Health and Safety Plan**

Kleinfelder prepared a project Site-specific Health and Safety Plan, which addressed the health and safety of Kleinfelder's workers, provided contingency plans for potential emergencies, and provided guidelines for PPE and safety procedures that were used by Kleinfelder staff during the field activities. This plan was prepared based on the general knowledge of the chemical characteristics of materials reportedly present, and suspected to be present, at and adjoining to the Site.

## **Utility Clearance**

Underground Service Alert of Southern California (also known as DigAlert), at telephone number 1-800-642-2444, provides a partial location service for major utility lines free of charge. California law requires providing at least 48 hours (2 business days) notification to DigAlert prior to performing intrusive activities, and Kleinfelder provided the required notification to DigAlert in accordance with State requirements to arrange for utility marking within pertinent public rights of way and utility easements. After marking the initially-proposed bore locations, on May 2, 2013, Kleinfelder notified DigAlert of the proposed soil sampling intrusive field activities, and DigAlert provided Ticket Numbers A31221193 (for Kleinfelder), A31221197 (for Martini Drilling Corporation), and A31221201 (for LADWP).

Because DigAlert may not mark underground utilities on private property, a geophysical services subcontractor (SubSurface Surveys & Associates, Inc. [SubSurface Surveys]) was contracted by Kleinfelder to locate and mark detectable utility lines at the proposed sampling locations. The purpose of the geophysical survey was to clear (insofar as possible), the proposed boreholes of drilling obstructions. On May 7, 2013 SubSurface Surveys used geophysical instruments to survey the areas of the proposed soil bores for underground obstructions. Visual inspection of the locations was also performed to assess for potential subsurface obstructions. Some bores had to be moved a few feet from their planned original locations to safely avoid identified utility lines, but most of the planned bore locations were not in conflict with utilities.

# **Soil Sampling**

Kleinfelder's soil sampling activities at the Site were performed between May 13 and 20, 2013, during which soil bores were advanced and sampled by Martini Drilling Corporation of Huntington Beach, California. Kleinfelder's soil sampling activities at the Site were performed at the direction and under the oversight of a California-registered professional engineer.

The bores were advanced using a Central Mining Equipment (CME) 75™ drill rig equipped with 6-inch outside diameter (OD) hollow-stem augers. Bores KLF-1 through KLF-3 were advanced within the former fuel tank soil remedial excavation. These bores were advanced to total depths ranging from approximately 66.5 feet bgs (KLF-2 and KLF-3) to 91.5 bgs (KLF-1). Since the ground surface within the former remedial excavation is approximately 4 feet below the surface of the remaining part of the Site, corresponding total depths of these three bores beneath the main part of the Site are approximately 70.5 feet to 95.5 feet bgs. Bores KLF-4 through KLF-7 were each advanced outside the former remedial excavation to an approximate depth of 71.5 feet bgs. Soil samples were generally collected at 5-foot vertical intervals for analytical testing from each of these seven bores. Each bore was backfilled with cement grout containing bentonite at the completion of sampling.

Soil samples were collected using a 2-inch OD, standard penetration split-spoon sampler lined with 1.5-inch OD, stainless steel sample sleeves. At each specified depth of sampling for laboratory analysis, the ends of a 6-inch long sample sleeve were covered with Teflon™ sheeting followed by tight-fitting plastic caps. The soil samples were labeled with a unique identification number, date, and time, and placed in an ice-chilled cooler until delivered, under chain of custody, for analysis to the soil analytical laboratory.

Soil samples were screened in the field using a photo-ionization detector (PID) equipped with a 10.6-electron volt detector lamp and calibrated to a 100 parts per million by volume (ppmv) isobutylene standard. The PID had a detection limit of 0.1 ppmv. Some of the soil from each sample interval was placed in a new re-sealable plastic bag that was subsequently sealed. The bag remained sealed at ambient air temperature for approximately 10 minutes to allow potential VOC vapors to volatize into the bag headspace. Then the probe tip of the PID was placed into the bag by unsealing a small length of the seal, and the total VOC vapor reading was recorded on the field bore log.

Sub-samples intended for laboratory VOC analysis were collected and preserved in the field using EnCore™ samplers in accordance with United States Environmental Protection Agency (US EPA) Method 5035.

Kleinfelder field personnel logged the bores and classified the soils in general accordance with the Unified Soils Classification System (USCS), using visual-manual procedures as described in ASTM International Standard D 2488.

In addition, during each day of soil sampling, field quality control (QC) samples, consisting of one soil sampling equipment rinsate, one trip blank, and one field blank per day, were collected. Equipment rinsate samples were labeled "QCEB," trip blank samples were labeled "QCTB," and field blank samples were labeled "QCFB."

# **Equipment Decontamination Procedures**

Reusable auger drilling and soil sampling equipment was cleaned prior to each use to reduce the potential for cross contamination. Core sample barrels, rods, and other downhole implements used during drilling were also cleaned prior to each use. Sampling equipment was cleaned prior to collecting each soil sample as follows:

- The equipment was first washed in a non-phosphate detergent (Liquinox®) and tap water solution, using a brush to dislodge soil, dirt, and other encrusted matter.
- Following the detergent wash, the sampling equipment was rinsed in tap water, followed by a final rinse using distilled water.

# **Investigation-Derived Waste**

Investigation-derived waste (IDW), consisting of drill cuttings and rinsate water generated by the drilling and sampling activities, was temporarily stored on-Site in Department of Transportation (DOT)-approved, 55-gallon steel drums, pending profiling and off Site disposal. For waste profiling purposes, one composite soil sample (designated "Soil Drum Profile") was collected on May 20, 2013 from the soil drums.

On July 18, 2013, 16 drums containing soil cuttings, along with 2 drums containing rinsate water from drilling operations, were transported off Site for disposal at a Statelicensed disposal facility. The soil drums were sent to Soil Safe, located in Adelanto, California, and the rinsate water was sent to DeMenno Kerdoon, located in Compton, California, for treatment and recycling. Copies of the waste disposal manifests are attached.

# **Laboratory Analyses**

Soil samples collected during sampling activities were submitted to LADWP's Environmental Laboratory, which is a California Department of Public Health (CDPH) Environmental Laboratory Accreditation Program (ELAP)-accredited laboratory located in Los Angeles, California.

In general, the soil samples were analyzed for GRO using US EPA Method 8015B; TEPH, DRO, and motor oil using modified US EPA Method 8015 (8015M); TRPH using US EPA Method 418.1; and VOCs using US EPA Methods 5035/8260B.

The trip blank samples and one field blank sample were analyzed for VOCs only, using US EPA Method 8260B. The remaining field blank sample and the equipment blank samples were analyzed for VOCs using US EPA Method 8260B; GRO using US EPA Method 8015B; oil and grease using US EPA Method 1664B (in lieu of US EPA Method 418.1); and TEPH, DRO and motor oil using US EPA Method 8015M.

The soil IDW composite sample was analyzed for GRO using US EPA Method 8015B; TEPH, DRO, and motor oil using US EPA Method 8015M; VOCs using US EPA Method 8260B; PCBs using US EPA Method 8082; and CCR Title 22 Metals using US EPA Methods 6010B and 7471.

## FIELD OBSERVATIONS AND ANALYTICAL RESULTS

Information from Kleinfelder's field bore logs was entered using the computer program gINT™ to prepare the attached bore logs. In general, poorly graded sand containing varying amounts of silt was encountered in the upper 65 feet explored by Kleinfelder's bores. Consistent with the discussion in the reviewed historical reports, Bores KLF-1 through KLF-3 encountered slurry fill in the uppermost 10 feet penetrated by each bore. A clayey sand lens, approximately 5 feet thick, was also encountered in Bore KLF-1 at approximately 35 feet below grade. Finer-grained soil lenses (approximately 5 feet thick) consisting of a sandy lean clay and poorly graded sand with clay were encountered in Bores KLF-2, KLF-3, and KLF-4 at approximately 65 feet below grade. Coarser-grained soils and increased density occurred beginning at 70 feet below grade in Bore KLF-1. Kleinfelder has prepared cross sections illustrating the conditions encountered by Kleinfelder's soil bores. The cross-section locations are shown on Plate 4, and the cross-sections are provided on Plates 5 through 7.

As previously noted, VOC screening of the soil samples was performed in the field, and results are presented on the attached bore logs in the column labeled "PID/FID (ppm)." Most of the PID readings were below the 0.1-ppmv instrument detection limit, with a few samples yielding PID readings of 2.0 ppmv or lower. The exceptions were for shallow samples collected from Bores KLF-1 and KLF-2, from which samples from 10 feet bgs (near the interface of slurry fill and native soil within the former fuel reservoir excavation) yielded PID readings of 275 ppmv and 110 ppmv, respectively, and the Bore KLF-1 sample from 15 feet bgs yielded a reading of 850 ppmv.

The GRO, TRPH, TEPH, DRO, motor oil, and VOC analytical results for the soil samples collected during Kleinfelder's Phase II ESA are summarized in Table 4. TEPH concentrations in soil are also shown on the cross-sections (Plates 5 through 7). The laboratory analytical reports from the LADWP's Environmental Laboratory are attached. In summary, the results indicate the following:

 As indicated in Table 4, 97 soil samples were analyzed for GRO, which was not detected at concentrations at or above the laboratory's MDLs.

- As Table 4 also shows, 97 soil samples were analyzed for TRPH, which was detected at or above its MDLs in 38 samples, at concentrations ranging from 21 mg/kg to 13,093 mg/kg.
- As Table 4 also shows, 97 soil samples were analyzed for TEPH, DRO, and motor oil. TEPH was detected at or above its MDLs in 22 samples, at concentrations ranging from 4.3 J mg/kg to 5,540 mg/kg. DRO was detected at or above its MDLs in four samples, at concentrations ranging from 125 J mg/kg to 4,520 mg/kg. Motor oil was detected at or above its MDLs in five samples, at concentrations ranging from 217 mg/kg to 1,180 mg/kg.
- As Table 4 also indicates, 97 soil samples were analyzed for VOCs, which were not detected in 95 of the samples at concentrations at or above the laboratory's Twelve VOCs were detected above their respective MDLs in the MDLs. remaining two soil samples (KLF-1-10 and KLF-1-15). Butylbenzene. sec-butylbenzene, isopropylbenzene, 4-chlorotoluene. ethylbenzene, p-isopropyltoluene, naphthalene, propylbenzene 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, meta- and para-xylenes (m&p-xylene), and o-xylene were detected in either one or both Samples KLF-1-10 and KLF-1-15. The detected concentrations of VOCs ranged from 38 J micrograms per kilogram (μg/kg) of 4-chlorotoluene in Sample KLF-1-10 to 7,680 μg/kg of 1,2,4-trimethylbenzene in Sample KLF-1-15. The remaining analyzed VOCs were not detected in these two samples at concentrations at or above the laboratory's MDLs.

The analytical results for the QC samples collected during Kleinfelder's Phase II ESA are summarized in Table 5, which includes GRO, oil and grease, TEPH, DRO, motor oil, and VOC results. Analytical results for each QC sample are below the laboratory's MDLs, indicating that there was no detected cross contamination from sample collection and handling procedures.

## **DISCUSSION AND CONCLUSIONS**

This assessment was performed to assess the potential presence, nature, and extent of petroleum hydrocarbons and associated VOCs in soil at the area of the removed fuel reservoir. To evaluate detected TPH concentrations, Kleinfelder compared the GRO, DRO, and motor oil concentrations of each soil sample to respective screening values of 500 mg/kg, 1,000 mg/kg, and 10,000 mg/kg. These values represent the Maximum Soil Screening Level (MSSL) values established by the California Regional Water Quality Control Board, Los Angeles Region (LARWQCB) for these respective carbon ranges and a depth to groundwater beneath a given sample that is in the range of 20 feet to 150 feet (LARWQCB, 2004). Because the California Environmental Protection Agency (Cal/EPA) has published no VOC California Human Health Screening Level (CHHSL) values for soil (Cal/EPA, 2005), the detected VOC concentrations were compared with the May 2014 Regional Screening Level (RSL) values for soil established by the US EPA's Region IX (US EPA, 2014). These comparisons indicated the following:

- The detected concentrations of DRO exceed its MSSL of 1,000 mg/kg in two soil samples, KLF-1-10 (3,240 mg/kg) and KLF-2-10 (4,520 mg/kg). These two samples were collected within the former fuel reservoir remedial excavation from approximately 15 feet below Site grade. The DRO concentration of each deeper soil sample analyzed from these bores was below the MSSL.
- The detected concentrations of motor oil were below its MSSL of 10,000 mg/kg.
- The detected concentrations of butylbenzene, 4-chlorotoluene, ethylbenzene, isopropylbenzene, p-isopropyltoluene, naphthalene, propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene in Sample KLF-1-10 were below their respective residential and industrial RSL values.
- The detected concentrations of butylbenzene, sec-butylbenzene, ethylbenzene, isopropylbenzene, p-isopropyltoluene, propylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, m&p-xylene, and o-xylene in Sample KLF-1-15 were below their respective residential and industrial RSL values.
- In Sample KLF-1-15, the detected concentration of naphthalene (5,485 μg/kg) exceeded its residential RSL of 3,800 μg/kg. This sample was collected within the former fuel reservoir remedial excavation from approximately 15 feet below Site grade. In the deeper soil samples analyzed from this bore, naphthalene was not detected at concentrations at or above its MDL.

Based on the presence of widespread near-surface soil impacted by petroleum hydrocarbons and metals (principally lead) at various Site locations and residual petroleum hydrocarbon impact below the limits of the former fuel reservoir excavation, Kleinfelder recommends LADWP consider preparation of a removal action work plan for the excavation and removal of hydrocarbon- and metal-impacted soil to reduce long term environmental liability associated with the Site.

## **LIMITATIONS**

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services were provided. Our conclusions, opinions, and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the points evaluated. Kleinfelder makes no other representation, guarantee, or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

This report may be used only by LADWP and the registered design professional in responsible charge and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than 2 years from the date of the report.

The work performed was based on project information provided by LADWP. If LADWP does not retain Kleinfelder to review any plans and specifications, including any revisions or modifications to the plans and specifications, Kleinfelder assumes no responsibility for the suitability of our recommendations. In addition, if there are any changes in the field to the plans and specifications, LADWP must obtain written approval from Kleinfelder's engineer that such changes do not affect our recommendations. Failure to do so will vitiate Kleinfelder's recommendations.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions comprise a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that LADWP has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the Site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, generator, or person who arranges for disposal, transport, storage, or treatment of hazardous materials within the meaning of any governmental statute, regulation, or order. LADWP is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment, or disposal of any hazardous materials observed at the Site, either before or during performance of Kleinfelder's services. LADWP is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

### **CLOSING REMARKS**

We thank you for the opportunity to provide Kleinfelder's professional environmental services and look forward to future work with you on other projects. Please feel free to call George Johnson at (951) 801-3681 should you have questions.

Sincerely,

KLEINFELDER WEST, INC.

Travis Meier

Staff Professional II

George Johnson, PE Senior Engineer PROFESSIONAL PROFE

Attachments:

References

**Plates** 

Plate 1 – Site Location Map

Plate 2 – Site Plan Showing Historical Soil Bore Locations

Plate 3 – Site Plan Showing 2013 Soil Bore Locations

Plate 4 – Site Plan Showing Cross-Section Locations

Plate 5 - Cross-Section A-A'

Plate 6 - Cross-Section B-B'

Plate 7 - Cross-Section C-C'

**Tables** 

Table 1 – Historical Soil Analytical Data – Organic Compounds

Table 2 – Historical Soil Analytical Data – TTLC Metals

Table 3 – Historical Soil Analytical Data – STLC and TCLP Metals

Table 4 – 2013 Soil Analytical Data

Table 5 – 2013 Quality Control Sample Analytical Data

Bore Logs

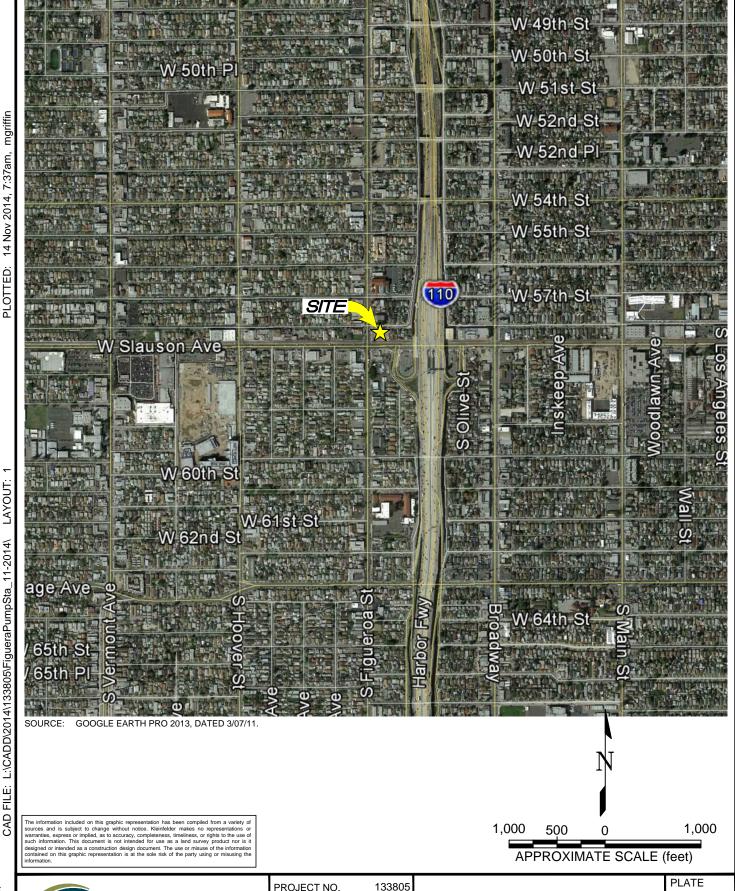
Waste Disposal Manifests

**Analytical Laboratory Reports** 

cc: Jeffrey Walker, PE, Kleinfelder



# **REFERENCES**




## **REFERENCES**

- California Environmental Protection Agency (Cal/EPA), 2005. Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties. January.
- California Regional Water Quality Control Board, Los Angeles Region (LARWQCB), 2004. *UST Closure Criteria (Draft) April 2004, rev Sept. 2006*. <a href="http://www.waterboards.ca.gov/rwqcb4/water\_issues/programs/ust/closure\_criteria/closurecriteria.pdf">http://www.waterboards.ca.gov/rwqcb4/water\_issues/programs/ust/closure\_criteria/closurecriteria.pdf</a>
- Dames & Moore, 1999. Report entitled *Phase 1 Environmental Site Assessment,*Former Figueroa Pump Station, LADWP File #W-69468, Northeast Corner of
  Slauson Avenue and Figueroa Street, Los Angeles, California, for Los Angeles
  Department of Water and Power. April 15.
- Parsons, Inc., 2004. Phase II Environmental Site Assessment, Former Figueroa Pump Station, 5800 South Figueroa Street, Los Angeles, California. October.
- US EPA, 2014. Regional Screening Level (RSL) Summary Table May 2014. May.



# **PLATES**





| PROJECT NO.      | 133805  | ſ |
|------------------|---------|---|
| DRAWN:           | 11/2014 | l |
| DRAWN BY:        | MRG     | l |
| CHECKED BY:      | GJ      | l |
| FILE NAME:       |         | l |
| 133805p1_SLM.dwg |         |   |

SITE LOCATION MAP

PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

1

Images: Aerial\_Image\_Figueroa\_201\_3-7-11.jpg

ATTACHED IMAGES: ATTACHED XREFS: LONG BEACH, CA

KLEINFELDER Bright People. Right Solutions. www.kleinfelder.com

| PROJECT NO.     | 133805  |
|-----------------|---------|
| DRAWN:          | 11/2014 |
| DRAWN BY:       | MRG     |
| CHECKED BY:     | GJ      |
| FILE NAME:      |         |
| 133805p2_HSP-SS | SL.dwg  |

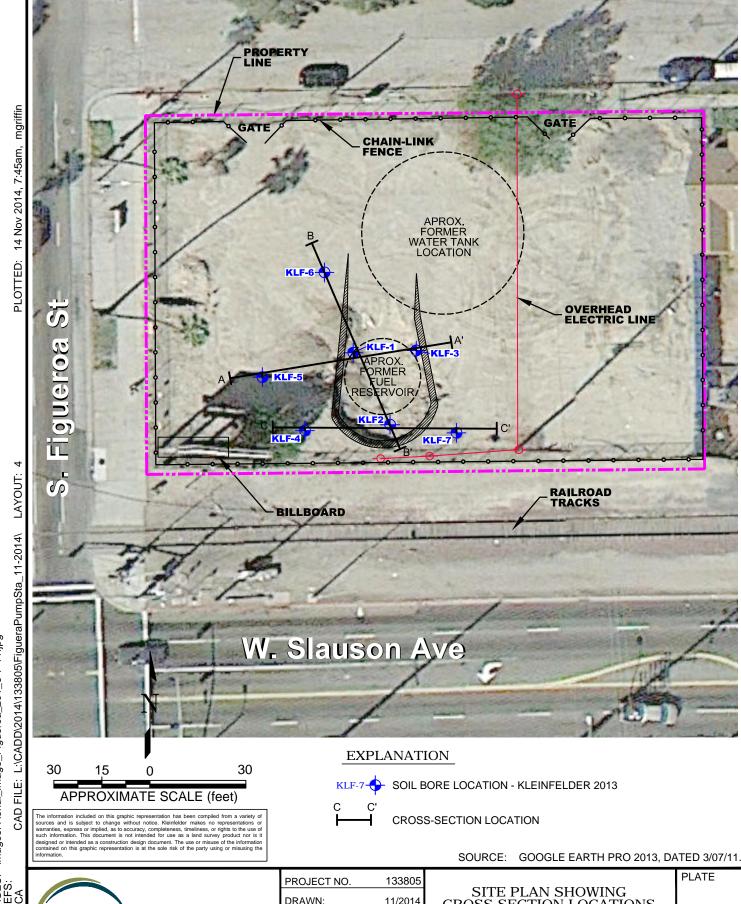
SITE PLAN SHOWING HISTORICAL SOIL BORE LOCATIONS

PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

**PLATE** 

ATTACHED IMAGES: ATTACHED XREFS: LONG BEACH, CA

KLEINFELDER Bright People. Right Solutions. www.kleinfelder.com


| PROJECT NO.     | 133805  |
|-----------------|---------|
| DRAWN:          | 11/2014 |
| DRAWN BY:       | MRG     |
| CHECKED BY:     | GJ      |
| FILE NAME:      |         |
| 133805p3_SP-SSL | .dwg    |

SITE PLAN SHOWING 2013 SOIL BORE LOCATIONS

PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

PLATE

3



Images: Aerial\_Image\_Figueroa\_201\_3-7-11.jpg

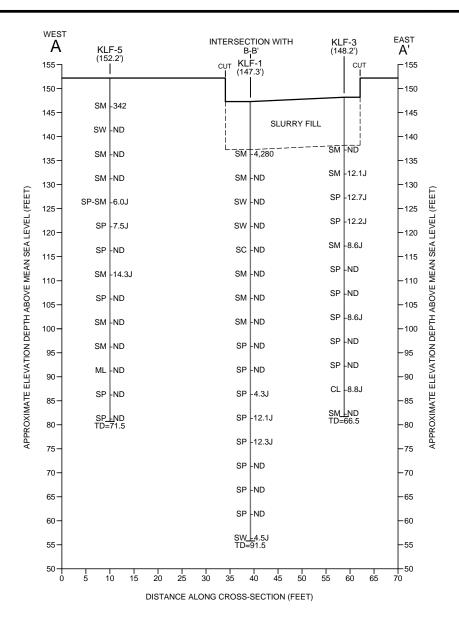
ATTACHED IMAGES: ATTACHED XREFS: LONG BEACH, CA

KLEINFELDER Bright People. Right Solutions. www.kleinfelder.com

DRAWN: 11/2014 DRAWN BY: MRG CHECKED BY: GJ FILE NAME: 133805p4\_CS-LM.dwg

SITE PLAN SHOWING CROSS-SECTION LOCATIONS

PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA


4

┙

<u>p15</u>



ATTACHED IMAGES: ATTACHED XREFS: LONG BEACH, CA



#### **LEGEND**

SM SILTY SAND, SAND-GRAVEL-CLAY MIXTURES

POORLY GRADED SAND, SAND-GRAVEL MIXTURES SP-SM WITH LITTLE FINES

POORLY GRADED SAND, SAND-GRAVEL MIXTURES SP WITH LITTLE OR NO FINES

WELL-GRADED SAND, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES SW

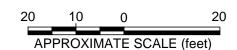
SC CLAYEY SAND, SAND-GRAVEL-CLAY MIXTURES

INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, CL GRAVELLY CLAY, SILTY CLAY, LEAN CLAY

INORGANIC SILT AND VERY FINE SAND, SILTY OR CLAYEY FINE SAND, SILT WITH SLIGHT PLASTICITY ML

**BORE NUMBER** 

(152.2')**GROUND ELEVATION (FEET)** 


**BORE WITH TEPH** CONCENTRATION

**TEPH** TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

MILLIGRAMS PER KILOGRAM mg/kg

NOT DETECTED ABOVE THE ND METHOD DETECTION LIMIT

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the





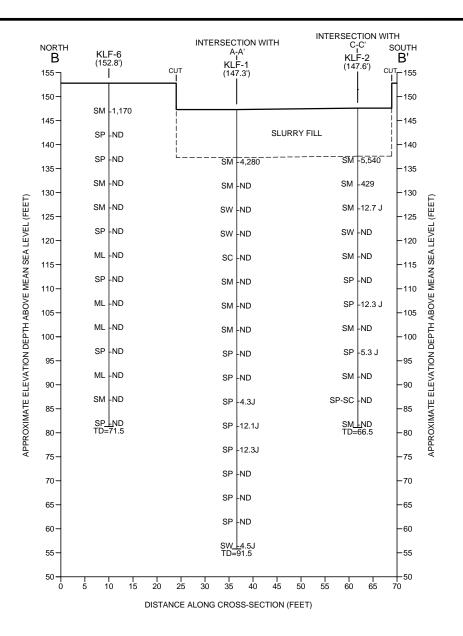
|   | PROJECT NO.       | 133805  |
|---|-------------------|---------|
|   | DRAWN:            | 11/2014 |
| 1 | DRAWN BY:         | MRG     |
|   | CHECKED BY:       | GJ      |
|   | FILE NAME:        |         |
|   | 133805p5_CS-A,B,C | .dwg    |

**PHAS** 

| E II ENVIRONMENTAL SITE ASSESSMENT |
|------------------------------------|
| FORMER FIGUEROA PUMP STATION       |
| 5800 S. FIGUEROA STREET            |

CROSS-SECTION A-A'

LOS ANGELES, CALIFORNIA


5

PLATE

à

<u>9</u>d





#### **LEGEND**

SM SILTY SAND, SAND-GRAVEL-CLAY MIXTURES

POORLY GRADED SAND, SAND-GRAVEL MIXTURES WITH LITTLE FINES SP-SC

POORLY GRADED SAND, SAND-GRAVEL MIXTURES SP WITH LITTLE OR NO FINES

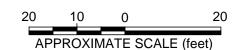
WELL-GRADED SAND, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES SW

SC CLAYEY SAND, SAND-GRAVEL-CLAY MIXTURES

INORGANIC SILT AND VERY FINE SAND, SILTY OR CLAYEY FINE SAND, SILT WITH SLIGHT PLASTICITY ML

**BORE NUMBER** KLF-6 (152.8')

**GROUND ELEVATION (FEET)** 


**BORE WITH TEPH** CONCENTRATION

**TEPH** TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

mg/kg MILLIGRAMS PER KILOGRAM

NOT DETECTED ABOVE THE ND METHOD DETECTION LIMIT

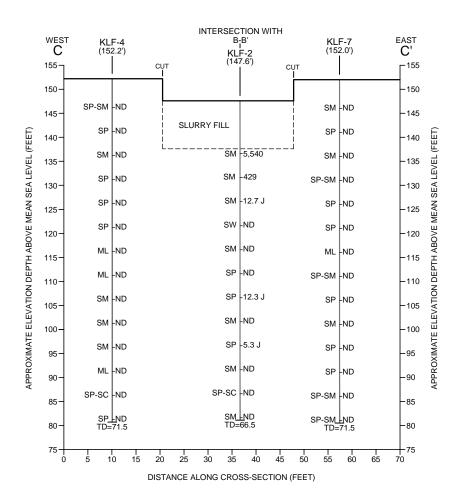
The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.



**PLATE** 

6

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>\</b>                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| A contract of the contract of | INFELDER Bright People. Right Solutions. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | www.kleinfelder.com                      |


|    | PROJECT NO.       | 133805  |
|----|-------------------|---------|
|    | DRAWN:            | 11/2014 |
| ļ. | DRAWN BY:         | MRG     |
|    | CHECKED BY:       | GJ      |
|    | FILE NAME:        |         |
|    | 133805p5_CS-A,B,C | .dwg    |

CROSS-SECTION B'-B PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

┙

Ö





# <u>LEGEND</u>

SM SILTY SAND, SAND-GRAVEL-CLAY MIXTURES

POORLY GRADED SAND, SAND-GRAVEL MIXTURES SP-SM

WITH LITTLE FINES

POORLY GRADED SAND, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES SP

WELL-GRADED SAND. SAND-GRAVEL MIXTURES SW

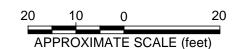
WITH LITTLE OR NO FINES

POORLY GRADED SAND, SAND-GRAVEL MIXTURE WITH LITTLE CLAY FINES SP-SC

INORGANIC SILT AND VERY FINE SAND, SILTY OR CLAYEY FINE SAND, SILT WITH SLIGHT PLASTICITY ML

KLF-4 BORF NUMBER

**GROUND ELEVATION (FEET)** (152.2')


**BORE WITH TEPH** CONCENTRATION

**TEPH** TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

MILLIGRAMS PER KILOGRAM mg/kg

NOT DETECTED ABOVE THE ND METHOD DETECTION LIMIT

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.



**PLATE** 

| KLE | INFELDER Bright People. Right Solutions. |
|-----|------------------------------------------|
|     | www.kleinfelder.com                      |

|   | PROJECT NO.       | 133805  |
|---|-------------------|---------|
|   | DRAWN:            | 11/2014 |
| ļ | DRAWN BY:         | MRG     |
|   | CHECKED BY:       | GJ      |
|   | FILE NAME:        |         |
|   | 133805p5_CS-A,B,C | .dwg    |
|   |                   |         |

| PHASE II ENVIRONMENTAL SITE ASSESSMENT |
|----------------------------------------|
| FORMER FIGUEROA PUMP STATION           |
| 5800 S. FIGUEROA STREET                |
| LOS ANGELES, CALIFORNIA                |

CROSS-SECTION C-C'



# **TABLES**

#### TABLE 1

#### HISTORICAL SOIL ANALYTICAL DATA - ORGANIC COMPOUNDS



FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

| ber       | Number               | Date                 | Φ               |                  | 36)                |                  | C28)             | Oil<br>C36)      | 12)                 | C22)             | Oil<br>C32)      | Volatile Organic Compounds |                 |                 |                 |                 |
|-----------|----------------------|----------------------|-----------------|------------------|--------------------|------------------|------------------|------------------|---------------------|------------------|------------------|----------------------------|-----------------|-----------------|-----------------|-----------------|
| re Number | Sample Nu            | Sample D             | Sample<br>Depth | ТКРН             | TEPH<br>(C9 - C36) | GRO              | DRO<br>(C10 -    | Motor (C22 - (   | TPH-g<br>(C4 - C12) | DRO<br>(C12 - (  | Motor<br>(C23 -  | Benzene                    | Ethylbenzene    | Toluene         | m,p-Xylene      | o-Xylene        |
| B         | Sam                  | ဖိ                   | (feet)          | 418.1<br>(mg/kg) | 8015M<br>(mg/kg)   | 8015B<br>(mg/kg) | 8015M<br>(mg/kg) | 8015M<br>(mg/kg) | 8015M<br>(mg/kg)    | 8015M<br>(mg/kg) | 8015M<br>(mg/kg) | 8260<br>(μg/kg)            | 8260<br>(μg/kg) | 8260<br>(μg/kg) | 8260<br>(μg/kg) | 8260<br>(μg/kg) |
|           | SB-1-0.5             | 8/5/2003             | 0.5             | -                | -                  | -                | -                | -                | 0.02J               | 80J              | 850              | -                          | -               |                 | -               | -               |
| SB-1      | SB-1-3               | 8/5/2003             | 3.0             | -                | -                  | -                | -                | -                | 0.03J               | ND(12)           | ND(12)           | ND(7.3)                    | 2J              | 1J              | 3J              | 1J              |
|           | SB-1-5               | 8/5/2003             | 5.0             | -                |                    | -                | -                | -                | 0.02J               | 30               | 120              | 0.5J                       | 0.3J            | 0.6J            | 1J              | 0.6J            |
|           | SB-2-0.5             | 8/5/2003             | 0.5             | -                | -                  | -                | -                | -                | 0.02J               | 230              | 760              | -                          | -               | -               | -               | -               |
| SB-2      | SB-2-3               | 8/5/2003             | 3.0             | -                |                    | -                | -                | -                | 0.03J               | 51J              | 600              | 0.4J                       | 2J              | 0.4J            | 6J              | 2J              |
|           | SB-2-5               | 8/5/2003             | 5.0             |                  | <u> </u>           | -                | -                | -                | ND(1.1)             | ND(11)           | 23               | ND(5.3)                    | 0.6J            | 0.4J            | 0.8J            | ND(5.3)         |
| SB-3      | SB-3-0.5             | 8/5/2003             | 0.5             |                  | <u> </u>           | -                | -                | -                | 0.02J<br>0.02J      | 53<br>4J         | 450<br>82        | 0.7J                       | -<br>0.8J       | -<br>0.4J       | -<br>1J         | -<br>0.6J       |
| 36-3      | SB-3-3<br>SB-3-5     | 8/5/2003<br>8/5/2003 | 3.0<br>5.0      | <u> </u>         | H                  | -                | -                | -                | 0.02J               | 780              | 2,900            | ND(6.6)                    | 0.8J<br>1J      | 0.4J<br>0.5J    | 1J<br>1J        | 0.6J<br>0.5J    |
|           | SB-4-0.5             | 8/5/2003             | 0.5             | -                | H:-                | -                | -                | -                | 0.02J               | 31J              | 300              | ND(0.0)                    | 10              | 0.53            | -               | 0.55            |
| SB-4      | SB-4-3               | 8/5/2003             | 3.0             |                  | <u> </u>           | -                | -                |                  | 0.02J               | 170              | 1,000            | ND(6.7)                    | 1J              | 0.5J            | 1J              | 0.5J            |
|           | SB-4-5               | 8/5/2003             | 5.0             | -                | -                  | -                | -                | -                | ND(1.0)             | 240              | 2,500            | ND(5.1)                    | 0.8J            | 0.4J            | 1J              | 0.4J            |
|           | SB-5-0.5             | 8/5/2003             | 0.5             |                  | -                  | -                | -                | -                | ND(1.1)             | ND(11)           | ND(11)           | -                          | -               | -               | -               | -               |
| 00.5      | SB-5-3               | 8/5/2003             | 3.0             | -                | -                  | -                | -                | -                | ND(1.3)             | ND(11)           | ND(11)           | ND(6.3)                    | 0.8J            | 0.5J            | 1J              | 0.4J            |
| SB-5      | SB-5-5               | 8/5/2003             | 5.0             | -                | -                  | -                | -                | -                | 0.02J               | ND(11)           | ND(11)           | ND(6.0)                    | 1J              | 0.4J            | 3J              | 2J              |
|           | SB-55-5              | 8/5/2003             | 5.0             | -                | -                  | -                | -                | -                | ND(1.1)             | ND(11)           | ND(11)           | ND(5.4)                    | 0.7J            | 0.3J            | 1J              | 0.4J            |
|           | SB-6-0.5             | 8/5/2003             | 0.5             | -                |                    | -                | -                | -                | 0.02J               | 13J              | 590              | -                          | -               | -               | -               | -               |
| SB-6      | SB-66-0.5            | 8/5/2003             | 0.5             | -                | -                  | -                | -                | -                | ND(1.0)             | 65J              | 1,500            | -                          | -               | -               | -               | -               |
|           | SB-6-3               | 8/5/2003             | 3.0             | -                | -                  | -                | -                | -                | 0.02J               | ND(11)           | 9J               | 0.5J                       | 1J              | 0.6J            | 1J              | 0.6J            |
|           | SB-6-5               | 8/5/2003             | 5.0             | -                | -                  | -                | -                | -                | ND(1.0)             | ND(11)           | ND(11)           | ND(5.1)                    | 1J              | 0.6J            | 1J              | 0.4J            |
| SB-7      | SB-7-0.5             | 8/5/2003             | 0.5             | -                |                    | -                | -                | -                | 0.02J               | 830              | 1,900            | -                          | -               | -               | -               | -               |
| SB-7      | SB-7-3               | 8/5/2003             | 3.0             |                  | <u> </u>           | -                | -                | -                | ND(1.1)             | 11<br>2J         | 74<br>ND(13)     | ND(5.7)<br>ND(6.3)         | 1J<br>1J        | 0.5J<br>0.4J    | 1J              | 0.5J            |
| -         | SB-7-5<br>SB-8-0.5   | 8/5/2003<br>8/5/2003 | 5.0<br>0.5      |                  | H-:-               | -                | -                | -                | ND(1.3)<br>0.02J    | 7J               | ND(13)<br>67     | ND(6.3)                    | 13              | -<br>-          | 1J<br>-         | 0.7J<br>-       |
|           | SB-8-3               | 8/5/2003             | 3.0             | <del> </del>     | H:-                | -                | -                | -                | 0.02J<br>0.05J      | 22J              | 220              | 7.0                        | -<br>2J         | 0.6J            | -<br>4J         | 2J              |
| SB-8      | SB-8-5               | 8/5/2003             | 5.0             | -                | <u> </u>           | -                | -                | -                | 0.033<br>0.1J       | 28J              | 180              | 5J                         | 2J              | 1J              | 4J              | 2J              |
|           | SB-8-10              | 8/5/2003             | 10.0            |                  | <u> </u>           | -                | -                | -                | 0.13<br>0.04J       | 560              | 1,300            | 0.5J                       | 2J              | 0.8J            | 2J              | 1J              |
|           | SB-9-0.5             | 8/5/2003             | 0.5             |                  | -                  | -                | -                | -                | 0.02J               | ND(11)           | ND(11)           | -                          | -               | -               | -               | -               |
| SB-9      | SB-99-0.5            | 8/5/2003             | 0.5             | -                | -                  | -                | -                | -                | ND(1.1)             | 25J              | 200              | -                          | -               | -               | -               | -               |
| SB-9      | SB-9-3               | 8/5/2003             | 3.0             | -                | -                  | -                | -                | -                | ND(1.0)             | ND(11)           | 6J               | ND(5.2)                    | 0.6J            | 0.4J            | 0.9J            | ND(5.2)         |
|           | SB-9-5               | 8/5/2003             | 5.0             | -                | -                  | -                | -                | -                | ND(1.0)             | ND(11)           | 4J               | ND(5.2)                    | 0.7J            | 0.3J            | 0.9J            | 0.4J            |
|           | SB-10-0.5            | 8/5/2003             | 0.5             | -                |                    | -                | -                | -                | 0.02J               | 23J              | 230              | -                          | -               | -               | -               | -               |
| SB-10     | SB-100-0.5           | 8/5/2003             | 0.5             | -                | -                  | -                | -                | -                | ND(1.1)             | 28J              | 600              |                            | -               | -               | -               | -               |
|           | SB-10-3              | 8/5/2003             | 3.0             | -                | -                  | -                | -                | -                | ND(1.2)             | ND(11)           | ND(11)           | ND(5.8)                    | 1J              | 0.4J            | 1J              | 0.5J            |
|           | SB-10-5              | 8/5/2003             | 5.0             | -                |                    | -                | -                | -                | ND(1.2)             | ND(11)           | ND(11)           | ND(6.0)                    | 1J              | 0.4J            | 1J              | 0.4J            |
| SB-11     | SB-11-0.5            | 8/5/2003             | 0.5             | -                |                    | -                | -                | -                | 0.02J               | 44<br>ND(44)     | 190              | - ND(0.4)                  | -               | - 0.01          | -               | - 0.51          |
| SB-11     | SB-11-3<br>SB-11-5   | 8/5/2003<br>8/5/2003 | 3.0<br>5.0      | -                | H                  | -                | -                | -                | ND(1.2)<br>ND(1.1)  | ND(11)<br>ND(11) | ND(11)<br>ND(11) | ND(6.1)<br>ND(5.3)         | 1J<br>0.5J      | 0.6J<br>0.3J    | 1J<br>0.8J      | 0.5J<br>0.4J    |
|           | SB-11-5<br>SB-12-0.5 | 8/5/2003             | 0.5             | -                | <del>-</del>       | -                | -                | -                | ND(1.1)             | 64               | 920              | ND(5.3)                    | 0.53            | -               | 0.83            | - 0.43          |
| SB-12     | SB-12-0.5<br>SB-12-4 | 8/5/2003             | 4.0             | -                | <u> </u>           | -                | -                | -                | 0.02J               | 200J             | 1.500            | 0.4J                       | -<br>1J         | 0.6J            | 2J              | 0.8J            |
| 02 .2     | SB-12-5              | 8/5/2003             | 5.0             | · .              | -                  | _                | _                | _                | 0.02J               | 14               | 190              | ND(5.6)                    | 0.9J            | 0.6J            | 1J              | 0.5J            |
|           | B13-1                | 8/11/2005            | 1.0             | 660              | -                  | -                | -                | _                | -                   | -                | -                | -                          | -               | -               | -               | -               |
|           | B13-3                | 8/11/2005            | 3.0             | 260              | -                  | -                | -                | -                | -                   | -                | -                | -                          | -               | -               | -               | -               |
| B13       | B13-5                | 8/11/2005            | 5.0             | 410              | -                  | -                | -                | -                | -                   | -                | -                | -                          | -               | -               | -               | -               |
| 1         | B13-9                | 8/11/2005            | 9.0             | 41,400           | 2,280              | -                | ND(20)           | -                |                     |                  |                  |                            |                 | -               |                 |                 |
|           | B13-10               | 8/11/2005            | 10.0            | 2,960            | 1,200              | -                | ND(20)           | -                | -                   | -                | -                | -                          | -               | -               | -               | -               |
|           | B14-1                | 8/11/2005            | 1.0             | 1,090            | -                  | -                | -                | -                |                     | -                | -                | -                          | -               | -               | -               | -               |
| B14       | B14-3                | 8/11/2005            | 3.0             | 130              | -                  | -                | -                | -                | -                   | -                | -                | -                          | -               | -               | -               | -               |
|           | B14-5                | 8/11/2005            | 5.0             | 40               |                    | -                | -                | -                | -                   | -                | -                | -                          | -               | -               | -               | -               |
|           | B15-1                | 8/11/2005            | 1.0             | 20,690           |                    | -                | -                | -                |                     | -                | -                |                            | -               | -               | -               | -               |
| B15       | B15-3                | 8/11/2005            | 3.0             | 54               |                    | -                | -                | -                | <u> </u>            | -                |                  | <u> </u>                   | -               | -               | -               | -               |
|           | B15-5                | 8/11/2005            | 5.0             | 52               | -                  | -                | -                | -                |                     | -                | -                |                            | -               | -               | -               | -               |

#### TABLE 1

#### HISTORICAL SOIL ANALYTICAL DATA - ORGANIC COMPOUNDS



FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

| Number                              | Number         | Date                   | Φ.              |                           | (36)             |                 | C28)        | Oil<br>C36)       | :12)                         | C22)           | Oil<br>C32)     |                 | Volatil              | le Organic Comp | ounds              |                  |
|-------------------------------------|----------------|------------------------|-----------------|---------------------------|------------------|-----------------|-------------|-------------------|------------------------------|----------------|-----------------|-----------------|----------------------|-----------------|--------------------|------------------|
| Bore Nun                            | Sample Nu      | Sample Date            | Sample<br>Depth | ±<br>6<br>2<br>⊢<br>418.1 | 100 - C36)       | O<br>%<br>8015B | DRO<br>015W | Motor<br>(C22 - 0 | M5108<br>M5108<br>(C4 - C12) | 0215<br>(C12 - | Motor<br>(C23 - | Benzene<br>8260 | Ethylbenzene<br>8260 | Toluene<br>8260 | m,p-Xylene<br>8260 | o-Xylene<br>8260 |
| ш                                   | S              | 0,                     | (feet)          | (mg/kg)                   | (mg/kg)          | (mg/kg)         | (mg/kg)     | (mg/kg)           | (mg/kg)                      | (mg/kg)        | (mg/kg)         | 8260<br>(μg/kg) | 8260<br>(μg/kg)      | 8260<br>(μg/kg) | 8260<br>(μg/kg)    | 8260<br>(μg/kg)  |
|                                     | B16-1          | 8/11/2005              | 1.0             | 1,290                     | -                | l -             | -           | - 1               | -                            | - 1            | -               | -               | - 1                  | -               | -                  | -                |
| B16                                 | B16-3          | 8/11/2005              | 3.0             | 1,980                     | -                | -               | -           | _                 | -                            | -              | _               | -               | _                    | _               | -                  | _                |
|                                     | B16-10         | 8/11/2005              | 10.0            | 580                       | -                | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B17-1          | 8/11/2005              | 1.0             | 3,650                     | -                | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| B17                                 | B17-3          | 8/11/2005              | 3.0             | 1,540                     |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| 517                                 | B17-5          | 8/11/2005              | 5.0             | 1,180                     |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B17-10         | 8/11/2005              | 10.0            | 140                       | -                | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B18-1          | 8/11/2005              | 1.0             | 380                       |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| B18                                 | B18-3          | 8/11/2005              | 3.0             | 52                        |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B18-5          | 8/11/2005              | 5.0             | 90                        | -                | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| B19                                 | B19-1<br>B19-3 | 8/11/2005<br>8/11/2005 | 3.0             | 310<br>50                 |                  | -               | -           | -                 | <u> </u>                     | -              | -               | -               | -                    | -               | -                  | -                |
| D19                                 | B19-3          | 8/11/2005              | 5.0             | 25J                       | H                | -               | -           | -                 | <u> </u>                     | -              | -               | <del>-</del>    | -                    | -               | -                  | -                |
|                                     | B20-1          | 8/11/2005              | 1.0             | 27,000                    | <del></del>      | -               |             |                   | <u> </u>                     | _              |                 | <del></del>     |                      |                 | -                  |                  |
|                                     | B20-3          | 8/11/2005              | 3.0             | 1.300                     | <u> </u>         | -               | -           |                   | <u> </u>                     | _              | -               |                 | -                    | -               | -                  | -                |
| B20                                 | B20-5          | 8/11/2005              | 5.0             | 8.660                     | <del></del>      | -               | -           | _                 |                              | _              | -               |                 | _                    | -               | _                  | -                |
|                                     | B20-10         | 8/11/2005              | 10.0            | 16,360                    | -                | -               | -           | _                 | _                            | -              | _               | _               | _                    | -               | -                  | _                |
|                                     | B21-1          | 8/11/2005              | 1.0             | 104                       |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| B21                                 | B21-5          | 8/11/2005              | 5.0             | 170                       | 934              | -               | ND(4)       | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B21-9          | 8/11/2005              | 9.0             | 448,000 / 11,300          | 9,980            | -               | 9,980       | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B22-1          | 8/11/2005              | 1.0             | 490                       | -                | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| B22                                 | B22-5          | 8/11/2005              | 5.0             | 11J                       | -                | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B22-9          | 8/11/2005              | 9.0             | 34                        |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B23-1          | 8/11/2005              | 1.0             | 2,840                     |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| B23                                 | B23-3          | 8/11/2005              | 3.0             | 29                        |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B23-5          | 8/11/2005              | 5.0             | 34                        |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
| B24                                 | B24-1          | 8/11/2005              | 1.0             | 420                       |                  | -               | -           | -                 | -                            | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B24-3<br>B25-1 | 8/11/2005              | 3.0             | 27                        |                  | -               | -           | -                 |                              | -              | -               | -               | -                    | -               | -                  | -                |
| B25                                 | B25-1<br>B25-3 | 8/11/2005<br>8/11/2005 | 1.0<br>3.0      | 2,720                     |                  | -               | -           | -                 | <u> </u>                     | -              | -               | -               | -                    | -               | -                  | -                |
|                                     | B25-3<br>B26-1 | 8/11/2005              | 1.0             | 940                       | <del>- : -</del> | -               |             | -                 | <del>- :</del>               | -              |                 | -               | -                    | -               | -                  |                  |
| B26                                 | B26-3          | 8/11/2005              | 3.0             | 24                        | <u> </u>         | -               | -           |                   | <u> </u>                     | -              |                 | <del>-</del>    | -                    |                 | -                  | -                |
|                                     | B27-1          | 8/11/2005              | 1.0             | 1,700                     | <u> </u>         |                 | -           |                   | <u> </u>                     | -              | -               | <del>-</del>    | -                    | -               | -                  | -                |
| B27                                 | B27-3          | 8/11/2005              | 3.0             | 3,900                     |                  | _               | _           | -                 | l .                          | _              | -               | -               | -                    | -               | -                  | _                |
| 1                                   | B27-5          | 8/11/2005              | 5.0             | 100                       | -                | -               | -           | _                 | -                            | -              | _               | -               | _                    | _               | -                  | _                |
| Excavation 58th & Fig 7/8/2009 17.0 |                | 70,100                 | -               | 29.2                      | 24,000           | ND(16)          | -           | -                 | -                            | ND(0.7)        | ND(0.6)         | ND(0.6)         | ND(1.1)              | ND(0.6)         |                    |                  |
| Screening V                         |                |                        |                 |                           |                  |                 |             |                   |                              |                |                 | ` ` `           | , , ,                | ` '             | ` ′                | ` '              |
| RSL - Reside                        |                |                        |                 | NV                        | NV               | 82              | 110         | 2,500             | 82                           | 110            | 2,500           | 1,200*          | 5,800*               | 4,900,000*      | 550,000*           | 650,000*         |
| RSL - Industr                       |                |                        |                 | NV                        | NV               | 420             | 600         | 33,000            | 420                          | 600            | 33,000          | 5,100*          | 25,000*              | 47,000,000*     | 2,400,000*         | 2,800,000*       |

 Notes:
 TEPH
 Total extractable petroleum hydrocarbons

 TRPH
 Total recoverable petroleum hydrocarbons

 TPH-g
 Total petroleum hydrocarbons gasoline

(C9 - C36) Carbon chain range of analysis

DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel)

8015B United States Environmental Protection Agency (US EPA) analytical method number

mg/kg Milligrams per kilogram μg/kg Micrograms per kilogram

ND Not detected above the practical quantitation limit, which is shown in parentheses

-- Analysis not performed on sample

J Estimated concentration between method detection limit and practical quantitation limit

NV No published value

US EPA May 2014 Regional Screening Level (in mg/kg); RSL values for TPH-g, TPH-d, and TPH-o are for Aromatic Low, Medium, and High, respectively

Yellow shading Indicates detected TPH concentration is higher than the residential RSL Screening Value

Screening value converted from mg/kg to µg/kg

# TABLE 2 HISTORICAL SOIL ANALYTICAL DATA - TTLC METALS FORMER FIGUEROA PUMP STATION

FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA



| Section   Part   |             |               |             |        |             |             |       |           |            | 2007            | GELES, CAL | 01.1.1 |       |                   |        |       |             |                    |             |        |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-------------|--------|-------------|-------------|-------|-----------|------------|-----------------|------------|--------|-------|-------------------|--------|-------|-------------|--------------------|-------------|--------|------------------|
| Section   Sect   | Bore Number | Sample Number | Sample Date | Sample | 6010B       | Arsen 8010B | 6010B | 6010B     | ර<br>6010B | 등<br>전<br>6010B | 6010B      | 6010B  | 6010B | <u>₹</u><br>7471A |        | 6010B | ഗ്<br>6010B | <u>ගි</u><br>6010B | 6010B       | 6010B  | 6010B            |
| Section   Sect   |             | 1             |             |        |             |             |       |           |            | 1               |            |        |       |                   |        | 1     |             |                    |             |        |                  |
| Section   Sect   |             |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| 68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   68-203   6   | SB-1        |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| \$8-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |               |             |        |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           |        | -                |
| \$9-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |               |             |        |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           |        | -                |
| Section   Sect   | SB-2        | SB-2-3        | 8/5/2003    | 3      |             | 4.1         | -     | -         | -          | -               | -          | -      | 90.9  | 0.097J            | -      | -     | -           | -                  | -           | -      | -                |
| Section   Sect   |             | SB-2-5        | 8/5/2003    | 5      |             | 1.9         | -     | -         | -          | -               | -          | -      | 3.5   | 0.13J             | -      | -     | -           | -                  | -           | -      | -                |
| Section   Sect   |             |               |             |        | -           |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           | -      | -                |
| Section   Sect   | SB-3        |               |             |        |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     |             | -                  | -           |        | -                |
| Section   Sect   |             |               |             |        | -           |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     |             | -                  | -           | -      | -                |
| Section   Sect   |             | SB-4-0.5      | 8/5/2003    | 0.5    |             | 5.7         | -     | -         | -          | -               | -          | -      | 181   | 0.13J             | -      | -     | -           | -                  | -           | -      | -                |
| \$8   \$6   \$6   \$6   \$6   \$3   \$3   \$2   \$1   \$2   \$1   \$1   \$1   \$1   \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SB-4        | SB-4-3        | 8/5/2003    | 3      | -           | 3.9         | -     | -         | -          | -               | -          | -      | 98.6  | 0.10J             | -      | -     | -           | -                  | -           | -      | -                |
| Section   Sect   |             |               |             |        |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           | -      | -                |
| Sept.   Sept   |             |               | 8/5/2003    |        |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           | -      | -                |
| SB-84   SB-2000   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SR-5        |               |             |        |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           |                    | -           | -      | -                |
| See   Sec    | J 50-5      |               |             |        |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           | -      | -                |
| Sept      |             | SB-55-5       | 8/5/2003    | 5      | -           | 1.6         |       | -         |            | -               | -          |        | 2.8   | 0.0097J           |        | -     | -           |                    | -           |        | -                |
| Sept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |               | 8/5/2003    | 0.5    | -           |             | -     | -         | -          | -               | -          | -      |       | 0.061J            | -      | -     |             | -                  | -           | -      | -                |
| Section   Sect   | SR-6        | SB-66-0.5     | 8/5/2003    | 0.5    |             |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           | -      | -                |
| S8-7-05   S8-7   | 05 0        |               | 8/5/2003    |        | -           |             | -     | -         | -          | -               | -          | -      |       | 0.047J            | -      | -     | -           | -                  | -           | -      | -                |
| Sept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | SB-6-5        | 8/5/2003    | 5      | -           | 0.71        | -     | -         | -          | -               | -          | -      | 2.9   | 0.11J             | -      | -     | -           | -                  | -           | -      | -                |
| SB-76   SB-903   SB   |             | SB-7-0.5      | 8/5/2003    | 0.5    | -           | 4.2         |       | -         |            | -               | -          |        | 126   | 0.39              |        | -     | -           |                    | -           |        | -                |
| S88-05   S89-03   S89-03   S89-03   S89-03   S89-03   S89-03   S89-04   S89-05   S   | SB-7        | SB-7-3        | 8/5/2003    | 3      | -           | 1.2         |       | -         |            | -               | -          |        | 108   | 0.076J            | -      | -     | -           |                    | -           |        | -                |
| SB-8-8   SB-9-3   SB-9033   3   .   1,6   .   .   .   .   .   .   .   .   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | SB-7-5        | 8/5/2003    | 5      | -           | 0.55        | -     | -         | -          | -               | -          | -      | 1.7   | 0.022J            | -      | -     | -           | -                  | -           | -      | -                |
| Section   Sect   |             | SB-8-0.5      | 8/5/2003    |        | -           |             |       | -         |            | -               | -          |        |       | 0.18J             |        | -     | -           |                    | -           |        | -                |
| SB-9-50   SB-9-003   10   1   70   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SR-8        |               |             |        | -           |             | -     | -         |            | -               | -          | -      | 46.5  |                   | -      | -     |             | -                  | -           | -      | -                |
| SB-96   SB-903   SB-903   SB-903   SB-905   SB-905   SB-903   SB-905   SB-903   SB-905   SB-903   SB-905   SB-903   SB-905   SB   | 3D-0        | SB-8-5        | 8/5/2003    | 5      | -           | 2.1         | -     | -         |            | -               | -          | -      | 126   |                   | -      | -     |             | -                  | -           | -      | -                |
| Section   Sect   |             |               |             |        |             |             | -     | -         | -          | -               | -          |        |       |                   | -      | -     | -           | -                  | -           |        | -                |
| SB-94   SS-903   3   - 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             | -                  |             |        |                  |
| S8-9-3   85/2003   3   - 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB-9        |               |             |        | -           |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           | -      | -                |
| SB-10-0.5   B5/2003   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5      | 05 3        |               |             |        | -           |             | -     | -         | -          | -               | -          | -      |       |                   | -      | -     | -           | -                  | -           | -      | -                |
| SB-109   SB-2003   SB-109   SB-2003   SB-105   SB-2003   S   |             |               |             |        |             |             | -     | -         | -          | -               | -          |        |       |                   | -      |       | -           | -                  | -           |        |                  |
| SB-10-3   B872003   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| S8-10-3 88/2003 5 - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB-10       |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             | -                  |             |        |                  |
| SB-11-05   B5/2003   0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |               |             |        |             |             | -     | -         | -          | -               | -          |        |       |                   | -      |       | -           | -                  | -           |        | -                |
| SB-11-3   88/2003   3   - 2.1                                                                                   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                          |             |               |             |        |             |             | -     | -         | -          | -               | -          |        |       |                   | -      |       | -           | -                  | -           |        | -                |
| SB-11-5   88/2003   6   - 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.44       |               |             |        |             |             |       |           |            | -               |            |        |       |                   |        |       |             | -                  | -           |        |                  |
| SB-12-0.5 8/5/2003 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB-11       |               |             |        |             |             |       |           |            | -               |            |        |       |                   |        |       |             | -                  | -           |        |                  |
| SB-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>     |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| SB1-2-5 8-5/2003   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CD 40       |               |             |        |             |             |       |           |            | -               |            |        |       |                   |        |       |             | -                  | -           |        |                  |
| B13-1 8/11/2005 1 6.3 4.5.J 70.6 ND(0.3) 1.3.J 9.4 11.4 6.3 10.2 - 0.9.J 5.8 8.6 ND(2.5) ND(2.5) 26.0 34.6 ND(0.3) 813-5 8/11/2005 5 8.0 3.5.J 138.0 0.4.J 1.8.J 77.3 17.8 15.3 7.9 - 0.9.J 10.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 40.2 51.0 ND(0.3) 813-9 8/11/2005 9 3.4.J ND(1.0) 89.5 ND(0.3) 0.9.J 8.4 9.3 8.1 15.0 - 1.1.0 10.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 40.1 49.1 ND(0.7) ND(0.5)  | SB-12       |               |             |        | <del></del> |             | -     | -         |            | -               | -          | -      |       |                   | -      | -     |             | -                  | <del></del> | -      | <del>  -  </del> |
| B13-3 8/11/2005 3 9.3 5.0 140.2 0.5 1.8 17.3 17.8 15.3 7.9 - 0.9 10.4 ND(0.7) ND(2.5) ND(2.5) 40.2 51.0 181.3 181.3 8/11/2005 9 8.0 3.5 1 138.0 0.4 1.8 20.0 18.0 12.5 13.8 - 1.10 10.4 ND(0.7) ND(2.5) ND(2.5 ND(2.5) 40.1 49.1 181.3 181.3 8/11/2005 9 9.3 4.4 ND(0.7) ND(0.5 ND(0.5) 10.5 10.5 ND(0.5 ND(0.5) 10.5 ND(0.5) 10.5 ND(0.5 ND(0.5 ND(0.5) 10.5 ND(0.5 ND(0.5) 10.5 ND(0.5 ND(0.5) 10.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND(0.5 ND(0.5 ND(0.5) ND(0.5 ND | <del></del> |               |             |        | -           |             | 70.0  | - ND(0.0) | - 4.2.1    | - 0.4           | - 11.1     | -      |       | ND(0.22)          | - 0.01 | - 5.0 |             | - ND(0.5)          | - ND(2.5)   | - 20.0 | - 24.6           |
| B13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B13-9 8/11/2005 9 3.4J ND(1.0) 89.5 ND(0.3) 0.9J 8.4 9.3 8.1 15.0 - 1.10 11.9 0.7J ND(2.5) ND(2.5) 23.5 24.2  B13-10 8/11/2005 10 9.2 3.6J 229.7 0.4J 2.3J 15.8 16.1 10.9 193.2 - 0.8J 10.4 ND(0.7) ND(2.5) ND(2.5) 36.0 94.7  B14-1 8/11/2005 1 7.7 4.2J 105.1 0.4J 18J 12.6 14.6 12.5 82.9 - 0.5J 8.0 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 32.5 59.1  B14-3 8/11/2005 3 4.2 3.4J 86.0 ND(0.3) 1.2J 14.4 10.7 5.9 6.6 - 0.2J 6.5 2.0J ND(2.5) ND(2.5) ND(2.5) 23.5 59.1  B15-4 8/11/2005 1 5.6 4.3J 92.7 ND(0.3) 1.2J 11.8 13.8 7.3 3.6J - 0.6J 7.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 22.2 32.8  B15-1 8/11/2005 1 5.6 4.3J 92.7 ND(0.3) 1.2J 15.0 12.0 17.7 28.6 - 2.40 22.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 27.4 50.5  B15-8 8/11/2005 3 8.1 6.4 96.7 0.3J 1.1J 14.0 13.3 8.4 6.3 - 2.30 7.4 4.5 ND(2.5) ND(2.5) ND(2.5) 27.4 50.5  B15-8 8/11/2005 1 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) ND(2.5) 32.0 30.5  B15-8 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.3 13.8 11.2 33.9 - 0.7J 8.0 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 32.2 47.8  B16-9 816-9 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) ND(2.5) 32.2 47.8  B16-9 816-9 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) ND(2.5) ND(2.5) 32.2 47.8  B16-9 816-9 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) ND(2.5) ND(2.5) S2.2 47.8  B16-9 816-9 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) ND(2.5) ND(2.5) S2.2 47.8  B17-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) S8.8 68.4  B18-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) S8.9 66.0  B17-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) S8.9 66.0  B17-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) S8.9 66.0  B17-1 8/11/2005 5 7.4 6.5 10.0 ND(0.7) ND(0.5) ND(0 | B13         |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B13-10 8/11/2005 10 9.2 3.6J 229.7 0.4J 2.3J 15.8 16.1 10.9 193.2 - 0.8J 10.4 ND(0.7) ND(2.5) ND(2.5) 36.0 94.7   B14-1 8/11/2005 1 7.7 4.2J 10.5 1 0.4J 1.8J 12.6 14.6 12.5 82.9 - 0.5J 8.0 ND(0.7) ND(2.5) ND(2.5) 32.5 59.1   B14-1 8/11/2005 5 8.2 2.4J 89.9 0.3J 1.4J 11.8 13.8 7.3 3.6J - 0.6J 7.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 24.8 23.5   B15-1 8/11/2005 1 5.6 4.3J 92.7 ND(0.3) 1.2J 15.0 12.0 17.7 28.6 - 2.40 22.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 29.2 32.8   B15-1 8/11/2005 5 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 12.0 17.7 28.6 - 2.40 22.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 27.4 50.5   B15-5 8/11/2005 5 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 4.5 ND(2.5) ND(2.5) ND(2.5) 32.0 30.5   B16-1 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.3 13.8 11.2 33.9 - 0.7J 8.0 ND(0.7) ND(2.5) ND(2.5) 32.2 47.8   B16-10 8/11/2005 10 10.7 4.5J 138.0 0.4J 1.5J 15.2 13.3 9.1 32.6 - 0.6J 10.3 ND(0.7) ND(2.5) ND(2.5) 32.2 47.8   B17-1 8/11/2005 1 10.7 4.6J 138.0 0.4J 1.5J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 66.4   B17-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2   B18-1 8/11/2005 1 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2   B17-1 8/11/2005 1 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2   B17-1 8/11/2005 1 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2   B18-1 8/11/2005 1 1 6.9 3.8J 98.7 0.5J 1.9J 17.3 18.2 16.0 40.2 - 0.4J 7.2 10.0 ND(2.5) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2   B18-1 8/11/2005 1 1 6.9 3.8J 98.7 0.5J 1.9J 12.7 14.9 12.2 63.5 - 0.7J 7.8 8.7 ND(2.5) ND(2.5) ND(2.5) ND(2.5) ND(2.5) ND(2.5) 32.9 146.2   B18-1 8/11/2005 1 1 6.9 3.8J 98.7 0.5J 1.9J 12.7 14.9 12.2 63.5 - 0.7J 7.8 8.7 ND(2.5) ND( | D13         |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B14-1 8/11/2005 1 7.7 4.2J 105.1 0.4J 1.8J 12.6 14.6 12.5 82.9 - 0.5J 8.0 ND(0.7) ND(2.5) ND(2.5) 32.5 59.1 814-3 8/11/2005 3 4.2 3.4J 86.0 ND(0.3) 1.2J 14.4 10.7 5.9 6.6 - 0.2J 6.5 2.0J ND(2.5) ND(2.5) 24.8 23.5 814-5 8/11/2005 5 8.2 2.4J 88.9 0.3J 1.4J 11.8 13.8 7.3 3.6J - 0.6J 7.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 29.2 32.8 81.5 1 8/11/2005 1 5.6 4.3J 92.7 ND(0.3) 1.2J 15.0 12.0 17.7 28.6 - 2.40 22.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 27.4 50.5 815-5 8/11/2005 3 8.1 6.4 96.7 0.3J 1.1J 14.0 13.3 8.4 6.3 - 2.30 7.4 4.5 ND(2.5) ND(2.5) ND(2.5) 32.0 30.5 815-5 8/11/2005 5 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 32.0 30.5 816-1 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) ND(2.5) 32.2 47.8 816-1 8/11/2005 3 9.7 1.7J 210.3 0.3J 1.8J 36.1 19.9 20.0 11.0 - 0.6J 13.0 ND(0.7) ND(0.7) ND(2.5) ND(2.5) S8.8 68.4 816-1 8/11/2005 1 1 0.7 4.5J 138.0 0.4J 1.5J 15.2 13.3 9.1 32.6 - 0.6J 10.3 ND(0.7) ND(2.5) ND(2.5) 38.0 56.0 817-1 8/11/2005 1 10.7 4.5J 138.0 0.4J 1.5J 15.2 13.3 9.1 32.6 - 0.6J 10.3 ND(0.7) ND(2.5) ND(2.5) 38.0 56.0 817-1 8/11/2005 1 10.7 4.5J 138.0 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 56.0 817-1 8/11/2005 1 10.7 4.5J 12.9 17.3 18.2 16.0 40.2 - 0.6J 12.2 ND(0.7) ND(2.5) ND(2.5) 38.9 76.2 817-1 8/11/2005 1 10.7 4.5J 12.7 12.7 12.7 12.7 12.1 19.8 65.4 - 0.9J 19.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2 817-1 8/11/2005 1 10.7 5.9 89.9 ND(0.3) 1.3J 13.8 11.8 10.0 40.2 - 0.6J 12.2 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2 817-1 8/11/2005 1 10.5 10.5 10.5 10.5 10.5 10.5 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1           |               |             |        |             |             |       |           |            |                 |            |        |       | <u> </u>          |        |       |             |                    |             |        |                  |
| B14-3 8/11/2005 3 4.2 3.4J 86.0 ND(0.3) 1.2J 14.4 10.7 5.9 6.6 - 0.2J 6.5 2.0J ND(2.5) ND(2.5) 24.8 23.5 B14-5 8/11/2005 5 8.2 2.4J 89.9 0.3J 1.4J 11.8 13.8 7.3 3.6J - 0.6J 7.4 ND(0.7) ND(2.5) ND(2.5) 29.2 32.8 D15-1 8/11/2005 1 5.6 4.3J 92.7 ND(0.3) 1.2J 15.0 12.0 17.7 28.6 - 2.40 22.4 ND(0.7) ND(2.5) ND(2.5) 27.4 50.5 D15-1 ND(0.7) ND(0.7 | <u> </u>    |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B14-5 8/11/2005 5 8.2 2.4J 89.9 0.3J 1.4J 11.8 13.8 7.3 3.6J - 0.6J 7.4 ND(0.7) ND(2.5) ND(2.5) 29.2 32.8 B15-1 8/11/2005 1 5.6 4.3J 92.7 ND(0.3) 1.2J 15.0 12.0 17.7 28.6 - 2.40 22.4 ND(0.7) ND(2.5) ND(2.5) 27.4 50.5 ND(2.5) 27.4 50.5 ND(2.5) 8/11/2005 1 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) 32.0 30.5 ND(2.5) 32.0 30.5 ND(2.5) 32.0 30.5 ND(2.5) 32.0 ND(2.5) ND | B14         |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B16-1 8/11/2005 1 5.6 4.3J 92.7 ND(0.3) 1.2J 15.0 12.0 17.7 28.6 - 2.40 22.4 ND(0.7) ND(2.5) ND(2.5) 27.4 50.5 B15-3 8/11/2005 3 8.1 6.4 96.7 0.3J 1.1J 14.0 13.3 8.4 6.3 - 2.30 7.4 4.5 ND(2.5) ND(2.5) 32.0 30.5 B15-5 8/11/2005 5 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) 32.2 47.8 ND(2.5) ND(2.5) 32.2 47.8 ND(2.5) ND(2.5) 32.2 47.8 ND(2.5) ND(2.5) 32.2 47.8 ND(2.5) | 1 2.3       |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B15-3 8/11/2005 3 8.1 6.4 96.7 0.3J 1.1J 14.0 13.3 8.4 6.3 - 2.30 7.4 4.5 ND(2.5) ND(2.5) 32.0 30.5 815-5 8/11/2005 5 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) ND(2.5) 32.2 40.9 816-1 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.3 13.8 11.2 33.9 - 0.7J 8.0 ND(0.7) ND(2.5) ND(2.5) ND(2.5) ND(2.5) 32.2 47.8 81.1 ND(0.7) ND(0 | <u> </u>    |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B16-1 8/11/2005 5 8.1 3.1J 91.4 0.3J 1.5J 12.9 15.0 8.2 4.7 - 0.8J 7.4 1.2J ND(2.5) ND(2.5) 33.2 40.9  B16-1 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.3 13.8 11.2 33.9 - 0.7J 8.0 ND(0.7) ND(2.5) ND(2.5) 32.2 47.8  B16-1 8/11/2005 3 9.7 1.7J 210.3 0.3J 1.8J 36.1 19.9 20.0 11.0 - 0.6J 13.0 ND(0.7) ND(2.5) ND(2.5) 58.8 68.4  B16-10 8/11/2005 10 10.7 4.5J 138.0 0.4J 1.5J 15.2 13.3 9.1 32.6 - 0.6J 10.3 ND(0.7) ND(2.5) ND(2.5) 88.0 56.0  B17-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.0 56.0  B17-1 8/11/2005 5 7.4 6.1 167.2 0.7J 2.7J 23.1 21.2 19.8 65.4 - 0.9J 19.4 ND(0.7) ND(2.5) ND(2.5) ND(2.5) ND(2.5) 88.9 76.2  B17-1 8/11/2005 1 0 2.0J 5.9 89.9 ND(0.3) 1.3J 13.8 11.8 10.0 40.2 - 0.4J 7.2 10.0 ND(2.5) ND(2.5) ND(2.5) ND(2.5) 38.9 76.2  B18-1 8/11/2005 1 6.9 3.8J 98.7 0.3J 1.9J 12.7 14.9 12.2 63.5 - 0.7J 7.8 8.7 ND(2.5) ND(2.5) ND(2.5) ND(2.5) ND(2.5) 32.9 146.2  B18-3 8/11/2005 3 7.7 5.8 129.6 0.5J 2.0J 16.7 18.9 14.0 12.2 - 2.1 10.6 ND(0.7) ND(2.5) ND(2.5) ND(2.5) ND(2.5) 25.0 30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B15         |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B16-1 8/11/2005 1 8.1 3.8J 92.5 0.4J 1.5J 12.3 13.8 11.2 33.9 - 0.7J 8.0 ND(0.7) ND(2.5) ND(2.5) 32.2 47.8 B16-3 8/11/2005 3 9.7 1.7J 210.3 0.3J 1.8J 36.1 19.9 20.0 11.0 - 0.6J 13.0 ND(0.7) ND(2.5) ND(2.5) ND(2.5) S8.8 68.4 ND(0.7) ND(0.7 | 1           |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B16 B16-3 8/11/2005 3 9.7 1.7J 210.3 0.3J 1.8J 36.1 19.9 20.0 11.0 - 0.6J 13.0 ND(0.7) ND(2.5) ND(2.5) 58.8 68.4   B16-10 8/11/2005 10 10.7 4.5J 138.0 0.4J 1.5J 15.2 13.3 9.1 32.6 - 0.6J 10.3 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 38.0 56.0   B17-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) ND(2.5) ND(2.5) 41.5 69.7   B17-3 8/11/2005 3 7.1 3.6J 120.7 0.5J 1.9J 17.3 18.2 16.0 40.2 - 0.6J 12.2 ND(0.7) ND(2.5) | <u> </u>    |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B16-10 8/11/2005 10 10.7 4.5J 138.0 0.4J 1.5J 15.2 13.3 9.1 32.6 - 0.6J 10.3 ND(0.7) ND(2.5) ND(2.5) 38.0 56.0 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B16         |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B17-1 8/11/2005 1 10.7 4.6J 128.3 0.5J 2.1J 19.4 16.7 16.7 65.3 - 0.4J 13.8 ND(0.7) ND(2.5) ND(2.5) 41.5 69.7   B17-3 8/11/2005 3 7.1 3.6J 120.7 0.5J 1.9J 17.3 18.2 16.0 40.2 - 0.6J 12.2 ND(0.7) ND(2.5) ND( | 1           |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B17-3 8/11/2005 3 7.1 3.6J 120.7 0.5J 1.9J 17.3 18.2 16.0 40.2 - 0.6J 12.2 ND(0.7) ND(2.5) ND(2.5) 38.9 76.2 18.7   B17-5 8/11/2005 5 7.4 6.1 167.2 0.7J 2.7J 23.1 21.2 19.8 65.4 - 0.9J 19.4 ND(0.7) ND(2.5)  | <b>—</b>    |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
| B17-5 8/11/2005 5 7.4 6.1 167.2 0.7J 2.7J 23.1 21.2 19.8 65.4 - 0.9J 19.4 ND(0.7) ND(2.5) ND(2.5) 64.0 121.0   B17-10 8/11/2005 10 2.0J 5.9 89.9 ND(0.3) 1.3J 13.8 11.8 10.0 40.2 - 0.4J 7.2 10.0 ND(2.5) ND(2.5) ND(2.5) S2.5 39.9   B18-1 8/11/2005 1 6.9 3.8J 98.7 0.3J 1.9J 12.7 14.9 12.2 63.5 - 0.7J 7.8 8.7 ND(2.5) ND(2.5) ND(2.5) ND(2.5) 32.9 146.2   B18-3 8/11/2005 3 7.7 5.8 129.6 0.5J 2.0J 16.7 18.9 14.0 12.2 - 2.1 10.6 ND(0.7) ND(2.5) ND(2.5) ND(2.5) ND(2.5) 32.9 146.2   B18-1 818-3 8/11/2005 3 7.7 5.8 129.6 0.5J 2.0J 16.7 18.9 14.0 12.2 - 2.1 10.6 ND(0.7) ND(2.5) ND(2.5) ND(2.5) 42.0 50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I           |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B17-10 8/11/2005 10 2.0J 5.9 89.9 ND(0.3) 1.3J 13.8 11.8 10.0 40.2 - 0.4J 7.2 10.0 ND(2.5) ND(2.5) 25.5 39.9<br>B18-1 8/11/2005 1 6.9 3.8J 98.7 0.3J 1.9J 12.7 14.9 12.2 63.5 - 0.7J 7.8 8.7 ND(2.5) ND(2.5) 32.9 146.2<br>B18 B18-3 8/11/2005 3 7.7 5.8 129.6 0.5J 2.0J 16.7 18.9 14.0 12.2 - 2.1 10.6 ND(0.7) ND(2.5) ND(2.5) 42.0 50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B17         |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B18-1 8/11/2005 1 6.9 3.8J 98.7 0.3J 1.9J 12.7 14.9 12.2 63.5 - 0.7J 7.8 8.7 ND(2.5) ND(2.5) 32.9 146.2<br>B18 B18-3 8/11/2005 3 7.7 5.8 129.6 0.5J 2.0J 16.7 18.9 14.0 12.2 - 2.1 10.6 ND(0.7) ND(2.5) ND(2.5) 42.0 50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
| B18 B18-3 8/11/2005 3 7.7 5.8 129.6 0.5J 2.0J 16.7 18.9 14.0 12.2 - 2.1 10.6 ND(0.7) ND(2.5) ND(2.5) 42.0 50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             |                    |             |        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B18         |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |               |             |        |             |             |       |           |            |                 |            |        |       | -                 |        |       |             |                    |             |        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |             |        |             |             |       |           |            |                 |            |        |       |                   |        |       |             | (/                 |             |        |                  |

#### TABLE 2 HISTORICAL SOIL ANALYTICAL DATA - TTLC METALS

FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA



| Bore Number      | Sample Number  | Sample Date            | Sample Depth | Antimony   | Arsenic BO109 | Barium<br>80109 | Beryllium       | Cadmium<br>B010B | Total Chromium | Copalt<br>Copalt | Copper       | Fead 6010B    | Mercury<br>7471A | Molybdenum<br>6010B | Nickell     | Seenium<br>8010B | >                  | Thallium           | Vanadium<br>80 | 2 <u>117</u><br>6010B |
|------------------|----------------|------------------------|--------------|------------|---------------|-----------------|-----------------|------------------|----------------|------------------|--------------|---------------|------------------|---------------------|-------------|------------------|--------------------|--------------------|----------------|-----------------------|
|                  |                |                        | (feet)       | (mg/kg)    | (mg/kg)       | (mg/kg)         | (mg/kg)         | (mg/kg)          | (mg/kg)        | (mg/kg)          | (mg/kg)      | (mg/kg)       | (mg/kg)          | (mg/kg)             | (mg/kg)     | (mg/kg)          | (mg/kg)            | (mg/kg)            | (mg/kg)        | (mg/kg)               |
|                  | B19-1          | 8/11/2005              | 1            | 7.5        | 4.6J          | 115.9           | 0.4J            | 2.3J             | 15.9           | 16.0             | 26.6         | 96.4          | -                | 1.3                 | 12.8        | 7.6              | ND(2.5)            | ND(2.5)            | 37.2           | 156.7                 |
| B19              | B19-3          | 8/11/2005              | 3            | 10.0       | 4.5J          | 135.4           | 0.5J            | 2.1J             | 18.2           | 20.1             | 18.6         | 26.4          | -                | 0.6J                | 11.1        | ND(0.7)          | ND(2.5)            | ND(2.5)            | 44.2           | 62.2                  |
|                  | B19-5          | 8/11/2005              | 5            | 8.1        | 3.4J          | 118.5           | 0.4J            | 1.8J             | 15.7           | 17.6             | 10.2         | 6.2           | -                | 0.4J                | 9.6         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 37.6           | 42.7                  |
|                  | B20-1          | 8/11/2005              | 1            | 1.5J       | 4.5J          | 69.2            | ND(0.3)         | 1.1J             | 8.7            | 10.4             | 24.8         | 30.1          | -                | ND(0.2)             | 9.5         | 10.4             | ND(2.5)            | ND(2.5)            | 26.7           | 40.1                  |
| B20              | B20-3          | 8/11/2005              | 3            | 13.3       | 8.4           | 788.0           | ND(0.3)         | 3.0J             | 20.6           | 15.2             | 50.0         | 257.4         | -                | 1.1                 | 12.1        | 32.6             | ND(2.5)            | ND(2.5)            | 28.6           | 863.0                 |
| 520              | B20-5          | 8/11/2005              | 5            | 8.2        | 7.9           | 92.9            | 0.3J            | 1.7J             | 19.2           | 13.8             | 47.9         | 33.6          | -                | 1.6                 | 18.3        | ND(0.7)          | ND(2.5)            | ND(2.5)            | 27.9           | 59.1                  |
|                  | B20-10         | 8/11/2005              | 10           | 2.5J       | 1.2J          | 64.2            | ND(0.3)         | 0.9J             | 6.3            | 7.3              | 4.8          | 6.1           | -                | 0.5J                | 7.8         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 21.5           | 13.1                  |
|                  | B21-1          | 8/11/2005              | 1            | 9.4        | 5.1           | 96.3            | 0.4J            | 1.4J             | 13.9           | 15.3             | 10.9         | 14.6          | -                | 2.3                 | 8.6         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 34.4           | 42.7                  |
| B21              | B21-5          | 8/11/2005              | 5            | 7.5        | 9.1           | 160.7           | 0.4J            | 1.8J             | 17.5           | 15.3             | 41.2         | 41.0          | -                | 0.9J                | 13.2        | ND(0.7)          | ND(2.5)            | ND(2.5)            | 34.5           | 79.9                  |
|                  | B21-9          | 8/11/2005              | 9            | 2.7J       | 5.9           | 74.4            | ND(0.3)         | 1.2J             | 8.5            | 6.8              | 4.2          | 8.9           | -                | 0.7J                | 6.0         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 17.1           | 126.3                 |
|                  | B21-9B         | 8/11/2005              | 9            | 5.9        | 6.4           | 99.4            | 0.3J            | 1.5J             | 16.2           | 11.6             | 35.1         | 80.4          | -                | 2.3                 | 22.6        | 0.9J             | ND(2.5)            | ND(2.5)            | 52.5           | 130.3                 |
|                  | B22-1          | 8/11/2005              | 1            | 10.4       | 10.6          | 122.4           | 0.4J            | 1.7J             | 14.3           | 14.3             | 13.0         | 19.5          | -                | 0.8J                | 9.7         | 8.2              | ND(2.5)            | ND(2.5)            | 32.3           | 49.8                  |
| B22              | B22-5          | 8/11/2005              | 5            | 8.8        | 2.8J          | 141.3           | 0.5J            | 1.9J             | 16.6           | 18.5             | 12.9         | 12.4          | -                | 0.4J                | 9.9         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 40.2           | 50.2                  |
|                  | B22-9          | 8/11/2005              | 9            | 3.4J       | 3.8J          | 350.8           | ND(0.3)         | 3.4              | 11.1           | 11.3             | 7.5          | 1,016         | -                | 0.7J                | 5.9         | 25.2             | ND(2.5)            | ND(2.5)            | 25.5           | 620.4                 |
|                  | B23-1          | 8/11/2005              | 11           | 1.0J       | ND(1.0)       | 84.9            | ND(0.3)         | 1.2J             | 8.6            | 9.6              | 13.7         | 329.3         | -                | 0.4J                | 6.6         | 1.3J             | ND(2.5)            | ND(2.5)            | 23.6           | 71.6                  |
| B23              | B23-3          | 8/11/2005              | 3            | 8.2        | 3.4J          | 103.9           | 0.4J            | 1.8J             | 13.9           | 16.1             | 9.2          | 3.4J          | -                | 0.4J                | 7.7         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 35.1           | 36.2                  |
|                  | B23-5          | 8/11/2005              | 5            | 7.8        | 2.3J          | 93.4            | 0.4J            | 1.4J             | 12.9           | 14.4             | 7.5          | 3.2J          | -                | 0.3J                | 7.2         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 32.8           | 33.6                  |
| B24              | B24-1          | 8/11/2005              | 1            | 3.0J       | 4.8J          | 101.8           | 0.4J            | 1.6J             | 8.1            | 10.9             | 13.2         | 208.8         | -                | 0.4J                | 5.8         | 6.4              | ND(2.5)            | ND(2.5)            | 24.8           | 57.0                  |
|                  | B24-3          | 8/11/2005              | 3            | 8.3        | 4.5J          | 96.3            | 0.3J            | 1.4J             | 12.4           | 14.7             | 8.2          | 4.4J          | -                | 0.3J                | 7.5         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 32.8           | 33.5                  |
| B25              | B25-1          | 8/11/2005              | 1            | 2.1J       | 4.9J          | 88.2            | ND(0.3)         | 1.4J             | 9.6            | 10.2             | 11.8         | 165.6         | -                | 0.4J                | 9.0         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 27.5           | 53.5                  |
|                  | B25-3          | 8/11/2005              | 3            | 9.4        | 2.8J          | 113.6           | 0.4J            | 1.5J             | 15.4           | 16.8             | 9.2          | 5.5           | -                | 0.6J                | 8.5         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 37.4           | 39.8                  |
| B26              | B26-1          | 8/11/2005              | 1            | 6.8        | 3.0J          | 97.5            | ND(0.3)         | 1.3J             | 10.4           | 12.1             | 10.9         | 147.1         | -                | 0.4J                | 7.5         | ND(0.7)          | ND(2.5)            | ND(2.5)            | 26.0           | 48.6                  |
|                  | B26-3          | 8/11/2005              | 3            | 6.5        | 5.4           | 157.2           | 0.6J            | 2.4J             | 21.3           | 22.9             | 19.4         | 18.3          | -                | 0.6J                | 12.9        | ND(0.7)          | ND(2.5)            | ND(2.5)            | 50.7           | 66.4                  |
| B27              | B27-1<br>B27-3 | 8/11/2005<br>8/11/2005 | 3            | 8.1<br>8.3 | 5.9<br>5.1    | 129.1<br>190.9  | ND(0.3)<br>0.5J | 1.5J<br>2.7J     | 11.6<br>17.6   | 12.1<br>17.5     | 30.4<br>26.1 | 25.6<br>347.3 | -                | 0.5J<br>0.3J        | 7.9<br>13.6 | ND(0.7)<br>6.5   | ND(2.5)<br>ND(2.5) | ND(2.5)<br>ND(2.5) | 26.6<br>38.2   | 83.3<br>206.4         |
| 621              | B27-3<br>B27-5 |                        |              | 0.8J       | 5.1<br>3.1J   |                 | 0.5J            | 1.3J             |                |                  | 10.9         | 12.6          | -                | 0.3J<br>ND(0.2)     | 8.6         | 0.7J             | ND(2.5)<br>ND(2.5) | ND(2.5)<br>ND(2.5) | 22.2           | 206.4                 |
| Caraanina Val    |                | 8/11/2005              | 5            | 0.8J       | 3.1J          | 105.1           | 0.3J            | 1.3J             | 11.8           | 10.2             | 10.9         | 12.6          | -                | ND(0.2)             | 8.6         | 0.7J             | ND(2.5)            | ND(2.5)            | 22.2           | 20.5                  |
| Screening Value  | ues            |                        |              |            |               |                 |                 |                  |                |                  |              |               |                  |                     |             |                  |                    |                    |                |                       |
| TTLC             |                |                        |              | 500        | 500           | 10,000          | 75              | 100              | 2,500          | 8,000            | 2,500        | 1,000         | 20               | 3,500               | 2,000       | 100              | 500                | 700                | 2,400          | 5,000                 |
| STLC (mg/L)      |                |                        |              | 15         | 5             | 100             | 0.75            | 1                | 560/5          | 80               | 25           | 5             | 0.2              | 350                 | 20          | 1                | 5                  | 7                  | 24             | 250                   |
| TCLP Value (m    |                |                        |              | NV         | 5             | 100             | NV              | 1                | 5              | NV               | NV           | 5             | 0.2              | NV                  | NV          | 11               | 5                  | NV                 | NV             | NV                    |
| RSL - Resident   |                |                        |              | 31         | 0.062         | 15,000*         | 15.2*           | 4.58*            | 120,000**      | 23               | 3,100        | 80*           | 9.4***           | 390                 | 1,500****   | 390              | 390                | 0.78               | 390            | 23,000                |
| RSL - Industrial | l (mg/kg)      |                        |              | 470        | 0.25          | 220,000*        | 183*            | 6.37*            | 1,800,000**    | 350              | 47,000       | 320*          | 40***            | 5,800               | 22,000****  | 5,800            | 5,800              | 12                 | 5,800          | 350,000               |
|                  |                |                        |              |            | 1             |                 |                 | 1                | , ,            |                  |              | 1             |                  |                     | 1           |                  |                    |                    |                |                       |
|                  |                | 10xSTL                 |              | 150        | 50            | 1,000           | 7.5             | 10               | 50             | 800              | 250          | 50            | 2                | 3,500               | 200         | 10               | 50                 | 70                 | 240            | 2,500                 |
|                  |                | 20xTCL                 | P            | NV         | 100           | 2,000           | NV              | 20               | 100            | NV               | NV           | 100           | 4                | NV                  | NV          | 20               | 100                | NV                 | NV             | NV                    |

| Notes: | 6010B | United States Environmental Protection Agency (US EPA) analytical method number         | 347    | Result greater than 10 x STLC                                                       |
|--------|-------|-----------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------|
|        | mg/kg | Milligrams per kilogram                                                                 | 1,016  | Result greater than TTLC and 10 x STLC and residential RSL Screening Value          |
|        | mg/L  | Milligrams per liter                                                                    |        | Samples tested for STLC metals [except mercury]                                     |
|        | ND    | Not detected above the practical quantitation limit, which is shown in parentheses      |        | Samples tested for STLC metals [except mercury] and TCLP metals                     |
|        | J     | Estimated concentration between method detection limit and practical quantitation limit | 4.77 J | Indicates detected concentration is higher than the residential RSL Screening Value |
|        |       | Analysis not performed on sample                                                        |        |                                                                                     |
|        | STLC  | California Code of Regulations Title 22 Soluble Threshold Limit Concentration           |        |                                                                                     |

US EPA May 2014 Regional Screening Level (in mg/kg); note RSLs with an asterisk (\*) are instead alternate soil screening levels provided in the California Office of Human and Ecological Risk's Human Health Risk Assesment

NV No value

\*\* Trivalent chromium

\*\*\* Elemental mercury

\*\*\*\* Soluble nickel salts

TCLP

RSL

TTLC California Code of Regulations Title 22 Total Threshold Limit Concentration

Toxicity Characteristic Leaching Procedure

Note No. 3, dated July 14, 2014

# TABLE 3 HISTORICAL SOIL ANALYTICAL DATA - STLC and TCLP METALS

FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA



| Number  | Number          | Date                   | Depth  | Á                   |                     |              | Ε                      | Ε                      | ıromium           |                |                    |                 | mnu              |                | E                      |                      |                      | Ε                 |                |
|---------|-----------------|------------------------|--------|---------------------|---------------------|--------------|------------------------|------------------------|-------------------|----------------|--------------------|-----------------|------------------|----------------|------------------------|----------------------|----------------------|-------------------|----------------|
| Bore Nt | Sample !        | Sample                 | Sample | Antimony            | senic               | Barium       | eryllium               | Sadmium                | otal Ch           | Cobalt         | Copper             | ead             | Molybder         | Nickel         | leniur                 | Silver               | Fhallium             | anadium           | ဥ              |
| ă       | Sar             | Ø                      | Sa     |                     | €<br>6010B          | 6010B        | മ്<br>6010B            | <u>පී</u><br>6010B     | <u>₽</u><br>6010B | රි<br>6010B    | <u>රි</u><br>6010B | 9<br>6010B      | ≦<br>6010B       | <u> </u>       | တီ<br>6010B            | ਲ<br>6010B           | 는<br>6010B           | <u>Ş</u><br>6010B | 2<br>          |
|         |                 |                        | (feet) | (mg/L)              | (mg/L)              | (mg/L)       | (mg/L)                 | (mg/L)                 | (mg/L)            | (mg/L)         | (mg/L)             | (mg/L)          | (mg/L)           | (mg/L)         | (mg/L)                 | (mg/L)               | (mg/L)               | (mg/L)            | (mg/L)         |
| SOLUBL  | E METALS BY W   | ET                     |        |                     |                     |              |                        |                        |                   |                |                    |                 |                  |                |                        |                      |                      |                   |                |
|         | B13-1           | 8/11/2005              | 1      | 0.138               | 0.102J              | 0.72         | 0.055                  | 0.128                  | 0.083             | 0.155          | 0.268              | 2.030           | 0.026            | 0.175          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.194             | 3.710          |
|         | B13-3           | 8/11/2005              | 3      | 0.062J              | 0.120               | 1.11         | 0.016J                 | 0.046J                 | 0.049             | 0.122          | 0.142              | 0.093J          | 0.059            | 0.146          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.181             | 0.332          |
| B13     | B13-5           | 8/11/2005              | 5      | 0.024J              | 0.092J              | 0.61         | ND(0.006)              | 0.020J                 | 0.076             | 0.126          | 0.324              | 1.164           | 0.050            | 0.114          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.265             | 0.979          |
|         | B13-9           | 8/11/2005              | 9      | 0.056J              | 0.065J              | 0.79         | 0.043                  | 0.089                  | 0.146             | 0.102          | 0.130              | 0.636           | 0.030            | 0.314          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.090             | 0.892          |
| -       | B13-10<br>B14-1 | 8/11/2005<br>8/11/2005 | 10     | 0.070J<br>0.056J    | 0.080J<br>0.072J    | 0.75<br>1.80 | 0.007J<br>ND(0.006)    | 0.013J<br>0.018J       | 0.086             | 0.251<br>0.110 | 0.182<br>0.256     | 1.228<br>2.462  | 0.033<br>0.025   | 0.265<br>0.125 | ND(0.014)<br>ND(0.014) | ND(0.05)<br>ND(0.05) | ND(0.05)<br>ND(0.05) | 0.377             | 1.239<br>0.794 |
| B14     | B14-1<br>B14-3  | 8/11/2005              | 3      | ND(0.016)           | 0.0723              | 2.50         | 0.008J                 | 0.018J                 | 0.059             | 0.110          | 0.256              | 0.261           | 0.025<br>0.015J  | 0.125          | ND(0.014)<br>ND(0.014) | ND(0.05)<br>ND(0.05) | ND(0.05)             | 0.190             | 0.794          |
| 514     | B14-5           | 8/11/2005              | 5      | 0.056J              | 0.162<br>0.033J     | 1.25         | ND(0.006)              | ND(0.013)              | 0.211             | 0.050          | 0.104              | 0.261           | 0.013J           | 0.093          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.136             | 0.219          |
|         | B15-1           | 8/11/2005              | 1      | 0.098               | 0.113               | 1.11         | ND(0.006)              | 0.020J                 | 0.554             | 0.093          | 0.420              | 1.037           | 0.162            | 0.033          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.155             | 1.387          |
| B15     | B15-3           | 8/11/2005              | 3      | 0.216               | 0.262               | 1.83         | 0.206                  | 0.847                  | 0.657             | 0.579          | 0.257              | 0.363           | ND(0.004)        | 0.716          | 0.458                  | ND(0.05)             | ND(0.05)             | 0.320             | 3.767          |
|         | B15-5           | 8/11/2005              | 5      | ND(0.016)           | 0.111               | 0.50         | ND(0.006)              | ND(0.013)              | 0.054             | 0.100          | 0.119              | 0.033J          | ND(0.004)        | 0.098          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.180             | 0.321          |
|         | B16-1           | 8/11/2005              | 1      | 0.022J              | 0.114               | 0.62         | ND(0.006)              | ND(0.013)              | 0.066             | 0.078          | 0.340              | 1.329           | 0.019J           | 0.117          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.187             | 0.944          |
| B16     | B16-3           | 8/11/2005              | 3      | 0.053J              | 0.089J              | 0.49         | ND(0.006)              | ND(0.013)              | 0.064             | 0.099          | 0.110              | 0.339           | ND(0.004)        | 0.086          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.161             | 1.129          |
|         | B16-10          | 8/11/2005              | 10     | 0.053J              | 0.078J              | 0.46         | ND(0.006)              | 0.021J                 | 0.067             | 0.205          | 0.368              | 1.616           | 0.014J           | 0.313          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.761             | 1.963          |
|         | B17-1           | 8/11/2005              | 1      | 0.375               | 0.385               | 1.71         | ND(0.006)              | ND(0.013)              | 0.346             | 0.122          | 0.119              | 1.319           | ND(0.004)        | 0.259          | 0.303                  | ND(0.05)             | ND(0.05)             | 0.080             | 3.037          |
| B17     | B17-3           | 8/11/2005              | 3      | 0.051J              | 0.065J              | 0.97         | ND(0.006)              | 0.015J                 | 0.084             | 0.258          | 0.250              | 1.197           | 0.032            | 0.257          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.448             | 1.302          |
| J       | B17-5           | 8/11/2005              | 5      | 0.072J              | 0.087J              | 0.65         | ND(0.006)              | 0.022J                 | 0.070             | 0.241          | 0.443              | 2.039           | 0.024            | 0.344          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.860             | 4.341          |
|         | B17-10          | 8/11/2005              | 10     | 0.032J              | 0.124               | 1.99         | ND(0.006)              | ND(0.013)              | 0.179             | 0.155          | 0.183              | 0.984           | 0.022            | 0.268          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.358             | 0.568          |
| D40     | B18-1           | 8/11/2005              | 1      | 0.030J              | 0.096J              | 0.63         | ND(0.006)              | 0.028J                 | 0.049             | 0.127          | 0.285              | 1.203           | 0.013J           | 0.133          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.178             | 4.860          |
| B18     | B18-3           | 8/11/2005              | 3      | ND(0.016)           | 0.035J              | 0.53         | ND(0.006)              | ND(0.013)              | 0.063             | 0.155          | 0.186              | 0.319           | 0.014J           | 0.118          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.222             | 0.233          |
|         | B18-5           | 8/11/2005              | 5      | 0.030J              | 0.096J              | 1.85         | ND(0.006)              | ND(0.013)              | 0.046             | 0.124          | 0.080              | 0.046J          | 0.010J           | 0.088          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.170             | 0.076          |
| B19     | B19-1           | 8/11/2005              | 1      | ND(0.016)           | 0.144               | 1.09         | ND(0.006)              | 0.029J                 | 0.198             | 0.126          | 0.948              | 13.47           | 0.052            | 0.363          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.288             | 4.431          |
| БІЭ     | B19-3<br>B19-5  | 8/11/2005<br>8/11/2005 | 3<br>5 | 0.022J<br>ND(0.016) | 0.024J<br>ND(0.021) | 1.52<br>0.53 | ND(0.006)<br>ND(0.006) | ND(0.013)<br>ND(0.013) | 0.072<br>0.043    | 0.169<br>0.136 | 0.282              | 1.350<br>0.244  | 0.020J<br>0.011J | 0.127<br>0.108 | ND(0.014)<br>ND(0.014) | ND(0.05)<br>ND(0.05) | ND(0.05)<br>ND(0.05) | 0.291<br>0.183    | 0.407          |
| -       | B20-1           | 8/11/2005              | 1      | ND(0.016)           | 0.037J              | 0.57         | ND(0.006)              | ND(0.013)              | 0.043             | 0.130          | 0.336              | 0.380           | 0.0113           | 0.108          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.103             | 0.389          |
|         | B20-3           | 8/11/2005              | 3      | 0.129               | 0.127               | 0.74         | ND(0.006)              | 0.036J                 | 0.033             | 0.125          | 1.485              | 5.217           | 0.022            | 0.133          | 0.307                  | ND(0.05)             | ND(0.05)             | 0.197             | 16.810         |
| B20     | B20-5           | 8/11/2005              | 5      | 0.045J              | 0.159               | 1.04         | ND(0.006)              | 0.038J                 | 0.412             | 0.123          | 1.576              | 1.540           | 0.058            | 0.500          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.456             | 1.985          |
|         | B20-10          | 8/11/2005              | 10     | 0.028J              | 0.061J              | 0.60         | ND(0.006)              | ND(0.013)              | 0.066             | 0.060          | 0.208              | 0.861           | 0.008J           | 0.151          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.092             | 0.444          |
|         | B21-1           | 8/11/2005              | 1      | 0.036J              | 0.070J              | 1.23         | ND(0.006)              | ND(0.013)              | 0.039             | 0.084          | 0.233              | 0.396           | 0.020J           | 0.120          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.205             | 0.209          |
| B21     | B21-5           | 8/11/2005              | 5      | ND(0.016)           | 0.168               | 1.65         | ND(0.006)              | ND(0.013)              | 0.286             | 0.121          | 1.036              | 1.147           | 0.044            | 0.386          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.286             | 1.594          |
| DZ I    | B21-9           | 8/11/2005              | 9      | 0.079J              | 0.190               | 1.44         | ND(0.006)              | ND(0.013)              | 0.221             | 0.055          | 0.038              | ND(0.019)       | 0.027            | 0.162          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.306             | 0.052          |
|         | B21-9B          | 8/11/2005              | 9      | 0.068J              | 0.170               | 1.22         | ND(0.006)              | 0.027J                 | 0.126             | 0.117          | 0.989              | 3.451           | 0.012J           | 0.384          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.851             | 3.930          |
|         | B22-1           | 8/11/2005              | 1      | 0.064J              | 0.251               | 1.75         | ND(0.006)              | 0.016J                 | 0.120             | 0.099          | 0.334              | 1.352           | 0.032            | 0.194          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.280             | 1.421          |
| B22     | B22-5           | 8/11/2005              | 5      | ND(0.016)           | 0.070J              | 0.66         | ND(0.006)              | ND(0.013)              | 0.056             | 0.158          | 0.169              | 0.384           | 0.015J           | 0.123          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.233             | 0.245          |
|         | B22-9           | 8/11/2005              | 9      | 0.104               | 0.142               | 0.87         | ND(0.006)              | 0.181                  | 0.165             | 0.086          | 0.204              | 58.120          | 0.021            | 0.110          | 1.611                  | ND(0.05)             | ND(0.05)             | 0.226             | 49.810         |
|         | B23-1           | 8/11/2005              | 1      | 0.022J              | 0.090J              | 0.93         | ND(0.006)              | 0.016J                 | 0.093             | 0.078          | 0.570              | 21.600          | 0.005J           | 0.114          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.103             | 2.621          |
| B23     | B23-3           | 8/11/2005              | 3      | 0.022J              | 0.037J              | 1.33         | ND(0.006)              | ND(0.013)              | 0.028J            | 0.071          | 0.126              | 1.617           | 0.008J           | 0.091          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.198             | 0.059          |
|         | B23-5           | 8/11/2005              | 5      | 0.024J              | 0.065J              | 1.52         | ND(0.006)              | ND(0.013)              | 0.047             | 0.067          | 0.074              | 0.308           | 0.012J           | 0.069          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.129             | 0.043          |
| B24     | B24-1           | 8/11/2005              | 1      | 0.039J              | 0.089J              | 0.81         | ND(0.006)              | ND(0.013)              | 0.074             | 0.078          | 0.277              | 9.058           | ND(0.004)        | 0.095          | ND(0.014)              | ND(0.05)             | ND(0.05)             | 0.070             | 1.437          |
| -       | B24-3<br>B25-1  | 8/11/2005<br>8/11/2005 | 3      | 0.032J<br>0.060J    | 0.056J<br>0.214     | 1.24<br>1.26 | ND(0.006)              | ND(0.013)<br>0.015J    | 0.037             | 0.093          | 0.118              | 1.086<br>7.135  | 0.012J<br>0.023  | 0.092          | ND(0.014)<br>ND(0.014) | ND(0.05)<br>ND(0.05) | ND(0.05)             | 0.189             | 0.046<br>1.215 |
| B25     | B25-1<br>B25-3  |                        | _      | 0.060J<br>0.049J    |                     |              | ND(0.006)              |                        | 0.149             | 0.088          | 0.311              |                 |                  |                |                        |                      | ND(0.05)             |                   |                |
| -       | B25-3<br>B26-1  | 8/11/2005<br>8/11/2005 | 3      | 0.049J<br>0.058J    | 0.080J<br>0.124     | 1.10<br>1.49 | ND(0.006)<br>ND(0.006) | ND(0.013)<br>ND(0.013) | 0.046             | 0.119          | 0.172              | 0.041J<br>6.203 | 0.019J<br>0.006J | 0.110          | ND(0.014)<br>ND(0.014) | ND(0.05)<br>ND(0.05) | ND(0.05)<br>ND(0.05) | 0.207<br>0.152    | 0.081<br>0.916 |
| B26     | B26-3           | 8/11/2005              | 3      | 0.058J<br>0.072J    | 0.124<br>ND(0.021)  | 2.60         | ND(0.006)              | ND(0.013)              | 0.072<br>0.023J   | 0.075          | 0.297              | 0.808           | 0.006J<br>0.015J | 0.107          | ND(0.014)<br>ND(0.014) | ND(0.05)<br>ND(0.05) | ND(0.05)<br>ND(0.05) | 0.152             | 0.916          |
|         | D20-3           | 0/11/2005              | J      | U.U/2J              | IND(U.UZT)          | 2.00         | (מטטיט)מאו             | IND(U.U13)             | U.UZ3J            | 0.000          | 0.094              | 0.000           | 0.015J           | 0.004          | ND(0.014)              | (CO.U)               | MD(0.03)             | 0.209             | 0.060          |

#### TABLE 3

#### HISTORICAL SOIL ANALYTICAL DATA - STLC and TCLP METALS

FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA



| Bore Number | Sample Number  | Sample Date | Sample Depth | Antimony 6010B | Ar senic  | Barin<br>Barin<br>6010B | Beryllium<br>6010B | Cadmin<br>Cadmin<br>Go10B | Bolo9     | Cobalit<br>Cobalit | Jaddo<br>Golober | 6010B     | Molybdenum<br>6010B |        | Selenium<br>0010B | Silver<br>6010B | Thallium 0010B | Vanadium<br>B0109 | Zinc<br>6010B |
|-------------|----------------|-------------|--------------|----------------|-----------|-------------------------|--------------------|---------------------------|-----------|--------------------|------------------|-----------|---------------------|--------|-------------------|-----------------|----------------|-------------------|---------------|
|             |                |             | (feet)       | (mg/L)         | (mg/L)    | (mg/L)                  | (mg/L)             | (mg/L)                    | (mg/L)    | (mg/L)             | (mg/L)           | (mg/L)    | (mg/L)              | (mg/L) | (mg/L)            | (mg/L)          | (mg/L)         | (mg/L)            | (mg/L)        |
| D07         | B27-1          | 8/11/2005   | 1            | ND(0.016)      | 0.201     | 2.38                    | ND(0.006)          | 0.020J                    | 0.286     | 0.130              | 1.052            | ND(0.019) | ND(0.004)           | 0.269  | ND(0.014)         | ND(0.05)        | ND(0.05)       | 0.128             | 0.938         |
| B27         | B27-3          | 8/11/2005   | 3            | ND(0.016)      | 0.085J    | 0.98                    | ND(0.006)          | 0.020J                    | 0.082     | 0.122              | 0.319            | 1.969     | 0.025               | 0.184  | ND(0.014)         | ND(0.05)        | ND(0.05)       | 0.168             | 3.914         |
| 201 1101    | B27-5          | 8/11/2005   | 5            | 0.074J         | 0.179     | 1.87                    | ND(0.006)          | ND(0.013)                 | 0.279     | 0.146              | 0.285            | 0.184     | 0.036               | 0.373  | ND(0.014)         | ND(0.05)        | ND(0.05)       | 0.261             | 0.643         |
|             | E METALS BY TO |             |              |                |           |                         |                    | 115 (2.212)               | 115/2 222 |                    |                  | 115/2 212 |                     |        | 115/2 21/1        | 115 (2.25)      |                |                   |               |
| B13         | B13-10         | 8/11/2005   | 10           |                | 0.024J    | 0.78J                   |                    | ND(0.013)                 | ND(0.006) |                    | -                | ND(0.019) |                     |        | ND(0.014)         | ND (0.05)       |                |                   |               |
| B20         | B20-3          | 8/11/2005   | 3            |                | ND(0.021) | 0.49J                   |                    | 0.018J                    | 0.021J    |                    |                  | 2.712     |                     |        | 0.109             | ND (0.05)       |                |                   |               |
| B22         | B22-9          | 8/11/2005   | 9            |                | 0.038J    | 0.56J                   |                    | 0.028J                    | 0.028J    |                    |                  | 2.332     |                     |        | ND(0.014)         | ND (0.05)       |                |                   |               |
| B23         | B23-1          | 8/11/2005   | 1            |                | ND(0.021) | 0.94J                   |                    | 0.015J                    | 0.008J    |                    |                  | 0.856     |                     |        | ND(0.014)         | ND (0.05)       |                |                   |               |
| B24         | B24-1          | 8/11/2005   | 1            |                | ND(0.021) | 0.92J                   |                    | ND(0.013)                 | 0.014J    |                    |                  | 0.347     |                     |        | ND(0.014)         | ND (0.05)       |                |                   |               |
| B25         | B25-1          | 8/11/2005   | 1            |                | 0.046J    | 0.84J                   |                    | ND(0.013)                 | 0.011J    | 1                  | 1                | ND(0.019) |                     |        | ND(0.014)         | ND (0.05)       |                |                   |               |
| B26         | B26-1          | 8/11/2005   | 1            |                | 0.030J    | 0.94                    |                    | ND(0.013)                 | ND(0.006) | 1                  | -                | 0.100     |                     |        | ND(0.014)         | ND (0.05)       |                |                   |               |
| B27         | B27-3          | 8/11/2005   | 3            | -              | 0.031J    | 0.84                    | -                  | ND(0.013)                 | ND(0.006) |                    |                  | 0.041J    |                     |        | ND(0.014)         | ND (0.05)       |                | -                 |               |
| Screenin    | g Values       |             |              |                |           |                         |                    |                           | •         |                    |                  |           |                     |        |                   |                 |                |                   |               |
| STLC (mg    | 1/L)           |             |              | 15             | 5         | 100                     | 0.75               | 1                         | 560/5     | 80                 | 25               | 5         | 350                 | 20     | 1                 | 5               | 7              | 24                | 250           |
| TCLP (mg    | 1/L)           |             |              |                | 5         | 100                     |                    | 1                         | 5         |                    |                  | 5         |                     |        | 1                 | 5               |                |                   |               |

| Notes: | 6010B | United States Environmental Protection Agency (US EPA) analytical method number |
|--------|-------|---------------------------------------------------------------------------------|
|        |       |                                                                                 |

Milligrams per liter mg/L

ND Not detected above the practical quantitation limit, which is shown in parentheses

J Estimated concentration between method detection limit and practical quantitation limit Analysis not performed on sample

California Code of Regulations Title 22 Soluble Threshold Limit Concentration Toxic Characteristic Leaching Procedure STLC

TCLP

Concentration exceeds the STLC threshold

KLEINFELDER
Bright People. Right Solutions.

5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

| Bore Number | Sample Number        | Sample Date            | Sample Depth | 0<br>25<br>8015B<br>(mg/kg) | ±<br>≟<br>⊬<br>418.1<br>(mg/kg) | (9E) - (32)<br>8015M<br>(mg/kg) | MS/k68)<br>M5/k69<br>(C10 - C28) | (mg/kg)<br>Motor Oil<br>(C22 - C36) | Butylbenzene       | enezene<br>8260B<br>(µg/kg) | (#g/kg)            | Ethylbenzene (#8/kg) | 8260B<br>(Hg/kg)   | Hollonene (1809/kg) | (#g/kg)            | 8260B<br>Propylbenzene | (57) (2,4-Trimethylbenzene | (hg/kg)<br>B 1,3,5-Trimethylbenzene | 82608<br>82608<br>87, Xylene | euel/X/-0<br>8260B<br>(µg/kg) |
|-------------|----------------------|------------------------|--------------|-----------------------------|---------------------------------|---------------------------------|----------------------------------|-------------------------------------|--------------------|-----------------------------|--------------------|----------------------|--------------------|---------------------|--------------------|------------------------|----------------------------|-------------------------------------|------------------------------|-------------------------------|
|             | KLF-1-10             | 5/13/2013              | 10           | ND (22)                     | 11,749                          | 4,280                           | 3.240                            | 1.040                               | 1,200              | ND (27)                     | 38 J               | 1.003                | 786                | 447                 | 3,456              | 1,449                  | 42 J                       | 196                                 | ND (75)                      | ND (28)                       |
|             | KLF-1-15             | 5/13/2013              | 15           | ND (22)                     | 61 J                            | ND (4)                          | ND (29)                          | ND (35)                             | 2,372              | 1,425                       | ND (28)            | 2,146                | 1,431              | 1,313               | 5,485              | 2,684                  | 7,680                      | 1,764                               | 1,524                        | 855                           |
|             | KLF-1-20             | 5/13/2013              | 20           | ND (1.1)                    | 56 J                            | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-25             | 5/13/2013              | 25           | ND (1.1)                    | 38 J                            | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-30             | 5/13/2013              | 30           | ND (1.1)                    | 26 J                            | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-35             | 5/13/2013              | 35           | ND (1.1)                    | 37 J                            | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-40             | 5/13/2013              | 40           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-45             | 5/13/2013              | 45           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
| KLF-1       | KLF-1-50             | 5/13/2013              | 50           | ND (1.1)                    | 31 J                            | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-55             | 5/13/2013              | 55           | ND (1.1)                    | 26 J                            | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-60             | 5/13/2013              | 60           | ND (1.1)                    | ND (18)                         | 4.3 J                           | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-65             | 5/13/2013              | 65           | ND (1.1)                    | ND (18)                         | 12.1 J                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-70             | 5/13/2013              | 70           | ND (1.1)                    | 31 J                            | 12.3 J                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-75             | 5/13/2013              | 75           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-80             | 5/13/2013              | 80           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-85             | 5/13/2013              | 85           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-1-90             | 5/13/2013              | 90           | ND (1.1)                    | ND (18)                         | 4.5 J                           | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-2-10             | 5/14/2013              | 10           | ND (22)                     | 13,093                          | 5,540                           | 4,520                            | 1,020                               | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-2-15             | 5/14/2013              | 15           | ND (1.1)                    | 1,592                           | 429                             | ND (29)                          | 429                                 | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-2-20             | 5/14/2013              | 20           | ND (1.1)                    | ND (18)                         | 12.7 J                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-2-25             | 5/14/2013              | 25           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-2-30             | 5/14/2013              | 30           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
| KLF-2       | KLF-2-35<br>KLF-2-40 | 5/14/2013<br>5/14/2013 | 35           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-2-40<br>KLF-2-45 | 5/14/2013              | 40<br>45     | ND (1.1)                    | ND (18)<br>ND (18)              | 12.3 J<br>ND (4)                | ND (29)<br>ND (29)               | ND (35)<br>ND (35)                  | ND (29)<br>ND (29) | ND (27)<br>ND (27)          | ND (28)<br>ND (28) | ND (30)<br>ND (30)   | ND (33)<br>ND (33) | ND (28)<br>ND (28)  | ND (30)<br>ND (30) | ND (30)<br>ND (30)     | ND (25)                    | ND (28)<br>ND (28)                  | ND (75)<br>ND (75)           | ND (28)                       |
|             | KLF-2-45<br>KLF-2-50 | 5/14/2013              | 50           | ND (1.1)                    |                                 |                                 |                                  |                                     |                    |                             |                    |                      | (/                 |                     |                    | ND (30)                | ND (25)                    |                                     |                              | ND (28)                       |
|             | KLF-2-50<br>KLF-2-55 | 5/14/2013              | 55           | ND (1.1)<br>ND (1.1)        | ND (18)<br>ND (18)              | 5.3 J<br>ND (4)                 | ND (29)<br>ND (29)               | ND (35)<br>ND (35)                  | ND (29)<br>ND (29) | ND (27)<br>ND (27)          | ND (28)<br>ND (28) | ND (30)<br>ND (30)   | ND (33)<br>ND (33) | ND (28)<br>ND (28)  | ND (30)<br>ND (30) | ND (30)                | ND (25)<br>ND (25)         | ND (28)<br>ND (28)                  | ND (75)<br>ND (75)           | ND (28)<br>ND (28)            |
|             | KLF-2-55<br>KLF-2-60 | 5/14/2013              | 60           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | KLF-2-65             | 5/14/2013              | 65           | ND (1.1)                    | ND (18)                         | ND (4)                          | ND (29)                          | ND (35)                             | ND (29)            | ND (27)                     | ND (28)            | ND (30)              | ND (33)            | ND (28)             | ND (30)            | ND (30)                | ND (25)                    | ND (28)                             | ND (75)                      | ND (28)                       |
|             | NLF-Z-00             | 3/14/2013              | UU           | ND (1.1)                    | ואט (וס)                        | IND (4)                         | ואט (צא)                         | ND (33)                             | IND (28)           | ND (Z1)                     | ND (20)            | ND (30)              | ND (33)            | ND (20)             | ND (30)            | (סט) שאו               | ND (23)                    | ND (20)                             | (ניז) טאי                    | ND (20)                       |

Notes: GRO Gasoline range organics (equivalent to total petroleum hydrocarbons as gasoline)

TEPH Total extractable petroleum hydrocarbons

(C9 - C36) Carbon chain range of analysis

DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel)

8015B United States Environmental Protection Agency (US EPA) analytical method number

Milligrams per kilogram

 $\begin{array}{ll} \text{mg/kg} & \text{Milligrams per kilogram} \\ \mu\text{g/kg} & \text{Micrograms per kilogram} \end{array}$ 

ND Not detected, below the method detection limit, which is shown in parentheses

J Estimated concentration between method detection limit and practical quantitation limit

Peaks in the diesel range but chromatogram does not match that of diesel standard

CHHSL California Human Health Screening Level (January 2005)

NL Not listed

RSL US EPA Regional Screening Level (May 2013)

MSSL Los Angeles Regional Water Quality Control Board Maximum Soil Screening Level (2004); MSSL assumes depth to groundwater below sample is between 20 feet and 150 feet

Shading Indicates detected concentration is higher than the MSSL Screening Value or the residental RSL Screening Value

Screening value converted from mg/kg to µg/kg



5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

| e Number | ple Number           | nple Date              | Sample Depth | O<br>ස<br>8015B      | Haur<br>418.1 | 00 TEPH (C9 - C36) | 8 DRO<br>W (C10 - C28) | Motor Oil<br>(C22 - C36) | Butylbenzene       | 80-Butylbenzene    | 8809 4-Chlorotoluene | Ethylbenzene       | 80 Isopropylbenzene | B P-Isopropyltoluene | Napthalene         | Propylbenzene      | 00 1,2,4-Trimethylbenzene | 80 1,3,5-Trimethylbenzene | m&p-Xylene         | euel XX o          |
|----------|----------------------|------------------------|--------------|----------------------|---------------|--------------------|------------------------|--------------------------|--------------------|--------------------|----------------------|--------------------|---------------------|----------------------|--------------------|--------------------|---------------------------|---------------------------|--------------------|--------------------|
| Bor      | San                  | San                    | (feet)       | (mg/kg)              | (mg/kg)       | (mg/kg)            | (mg/kg)                | (mg/kg)                  | (μg/kg)            | (μg/kg)            | (μg/kg)              | (μg/kg)            | (μg/kg)             | (μg/kg)              | (μg/kg)            | (μg/kg)            | (μg/kg)                   | (μg/kg)                   | (μg/kg)            | (μg/kg)            |
|          | KLF-3-10             | 5/15/2013              | 10           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-10<br>KLF-3-15 | 5/15/2013              | 15           | ND (22)              | 51 J          | 12.1 J             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-20             | 5/15/2013              | 20           | ND (1.1)             | ND (18)       | 12.7 J             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-25             | 5/15/2013              | 25           | ND (1.1)             | ND (18)       | 12.2 J             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-30             | 5/15/2013              | 30           | ND (1.1)             | ND (18)       | 8.6 J              | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
| KLF-3    | KLF-3-35             | 5/15/2013              | 35           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
| KLI-5    | KLF-3-40             | 5/15/2013              | 40           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-45             | 5/15/2013              | 45           | ND (1.1)             | ND (18)       | 8.6 J              | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-50             | 5/15/2013              | 50           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-55             | 5/15/2013              | 55           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-60             | 5/15/2013              | 60           | ND (1.1)             | ND (18)       | 8.8 J              | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-3-65             | 5/15/2013              | 65           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-5              | 5/16/2013              | 5            | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-10             | 5/16/2013              | 10           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-15             | 5/16/2013              | 15           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-20             | 5/16/2013              | 20           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-25             | 5/16/2013              | 25           | ND (1.1)             | 29 J          | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-30<br>KLF-4-35 | 5/16/2013<br>5/16/2013 | 30<br>35     | ND (1.1)<br>ND (1.1) | 22 J<br>27 J  | ND (4)<br>ND (4)   | ND (29)<br>ND (29)     | ND (35)<br>ND (35)       | ND (29)<br>ND (29) | ND (27)<br>ND (27) | ND (28)<br>ND (28)   | ND (30)<br>ND (30) | ND (33)<br>ND (33)  | ND (28)<br>ND (28)   | ND (30)<br>ND (30) | ND (30)<br>ND (30) | ND (25)<br>ND (25)        | ND (28)<br>ND (28)        | ND (75)<br>ND (75) | ND (28)<br>ND (28) |
| KLF-4    | KLF-4-40             | 5/16/2013              | 40           | ND (1.1)<br>ND (1.1) | 27 J          | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-40<br>KLF-4-45 | 5/16/2013              | 45           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-45<br>KLF-4-50 | 5/16/2013              | 50           | ND (1.1)             | 29 J          | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-55             | 5/16/2013              | 55           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-60             | 5/16/2013              | 60           | ND (1.1)             | ND (18)       | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-65             | 5/16/2013              | 65           | ND (1.1)             | 29 J          | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |
|          | KLF-4-70             | 5/16/2013              | 70           | ND (1.1)             | 28 J          | ND (4)             | ND (29)                | ND (35)                  | ND (29)            | ND (27)            | ND (28)              | ND (30)            | ND (33)             | ND (28)              | ND (30)            | ND (30)            | ND (25)                   | ND (28)                   | ND (75)            | ND (28)            |

Notes: GRO Gasoline range organics (equivalent to total petroleum hydrocarbons as gasoline)

TEPH Total extractable petroleum hydrocarbons

(C9 - C36) Carbon chain range of analysis

DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel)

8015B United States Environmental Protection Agency (US EPA) analytical method number

mg/kg Milligrams per kilogram

μg/kg Micrograms per kilogram

ND Not detected, below the method detection limit, which is shown in parentheses

J Estimated concentration between method detection limit and practical quantitation limit
\* Peaks in the diesel range but chromatogram does not match that of diesel standard

CHHSL California Human Health Screening Level (January 2005)

NL Not listed

RSL US EPA Regional Screening Level (May 2014)

MSSL Los Angeles Regional Water Quality Control Board Maximum Soil Screening Level (2004); MSSL assumes depth to groundwater below sample is between 20 feet and 150 feet

Shading Indicates detected concentration is higher than the MSSL Screening Value or the residental RSL Screening Value

Screening value converted from mg/kg to µg/kg



5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

| Bore Number | Sample Number | Sample Date | Sample Depth | 0<br>80<br>8015B<br>(mg/kg) | ###################################### | 8015M<br>(mg/kg) | MS/kg)  | (mg/kg) | Butylbenzene | eo-Butylbenzene<br>8260Β<br>(μg/kg) | (hd/kd) | Ethylbenzene<br>8260B<br>(µg/kg) | Reopropy/benzene | 8260B<br>B-Isopropyltoluene | Napthalene (#g/kg) | 8260B<br>(µg/kg) | (2) (2) (4-Trimethylbenzene | (mg/kg)<br>800 (mg/kg)<br>800 (mg/kg)<br>800 (mg/kg) | ече/XX<br>- 4 ж<br>в<br>8260В<br>(µg/kg) | aua/X, do 8260B (µg/kg) |
|-------------|---------------|-------------|--------------|-----------------------------|----------------------------------------|------------------|---------|---------|--------------|-------------------------------------|---------|----------------------------------|------------------|-----------------------------|--------------------|------------------|-----------------------------|------------------------------------------------------|------------------------------------------|-------------------------|
|             | KLF-5-5       | 5/16/2013   | 5            | ND (1.1)                    | 273                                    | 342              | 125 J   | 217     | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-10      | 5/16/2013   | 10           | ND (1.1)                    | ND (18)                                | 12.4 J           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-15      | 5/16/2013   | 15           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-20      | 5/16/2013   | 20           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-25      | 5/16/2013   | 25           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-30      | 5/16/2013   | 30           | ND (1.1)                    | ND (18)                                | 6.0 J            | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
| KLF-5       | KLF-5-35      | 5/16/2013   | 35           | ND (1.1)                    | ND (18)                                | 7.5 J            | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
| KLI-5       | KLF-5-40      | 5/16/2013   | 40           | ND (1.1)                    | ND (18)                                | 14.3 J           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-45      | 5/16/2013   | 45           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-50      | 5/16/2013   | 50           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-55      | 5/16/2013   | 55           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-60      | 5/16/2013   | 60           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-65      | 5/16/2013   | 65           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-5-70      | 5/16/2013   | 70           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-5       | 5/20/2013   | 5            | ND (1.1)                    | 7,198                                  | 1,710            | 531     | 1,180   | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-10      | 5/20/2013   | 10           | ND (1.1)                    | 28 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-15      | 5/20/2013   | 15           | ND (1.1)                    | 29 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-20      | 5/20/2013   | 20           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-25      | 5/20/2013   | 25           | ND (1.1)                    | 36 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-30      | 5/20/2013   | 30           | ND (1.1)                    | 37 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
| KLF-6       | KLF-6-35      | 5/20/2013   | 35           | ND (1.1)                    | 21 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-40      | 5/20/2013   | 40           | ND (1.1)                    | ND (18)                                | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-45      | 5/20/2013   | 45           | ND (1.1)                    | 28 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-50      | 5/20/2013   | 50           | ND (1.1)                    | 43 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-55      | 5/20/2013   | 55           | ND (1.1)                    | 28 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-60      | 5/20/2013   | 60           | ND (1.1)                    | 29 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-65      | 5/20/2013   | 65           | ND (1.1)                    | 22 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |
|             | KLF-6-70      | 5/20/2013   | 70           | ND (1.1)                    | 29 J                                   | ND (4)           | ND (29) | ND (35) | ND (29)      | ND (27)                             | ND (28) | ND (30)                          | ND (33)          | ND (28)                     | ND (30)            | ND (30)          | ND (25)                     | ND (28)                                              | ND (75)                                  | ND (28)                 |

| Notes: | GRO  | Gasoline range organics (equivalent to total petroleum hydrocarbons as gasoline) |
|--------|------|----------------------------------------------------------------------------------|
|        | TEPH | Total extractable petroleum hydrocarbons                                         |

TEPH Total extractable petroleum hydrocarbons

(C9 - C36) Carbon chain range of analysis
DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel)

8015B United States Environmental Protection Agency (US EPA) analytical method number

mg/kg Milligrams per kilogram

μg/kg Micrograms per kilogram

ND Not detected, below the method detection limit, which is shown in parentheses

Estimated concentration between method detection limit and practical quantitation limit

Peaks in the diesel range but chromatogram does not match that of diesel standard

CHHSL California Human Health Screening Level (January 2005)

NL Not listed

J

RSL US EPA Regional Screening Level (May 2013)

MSSL Los Angeles Regional Water Quality Control Board Maximum Soil Screening Level (2004); MSSL assumes depth to groundwater below sample is between 20 feet and 150 feet

Shading Indicates detected concentration is higher than the MSSL Screening Value or the residental RSL Screening Value

\*\* Screening value converted from mg/kg to µg/kg



5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

| Bore Number      | Sample Number | Sample Date | Sample Depth | 0<br>ජ<br>ජ<br>8015B<br>(mg/kg) | 표<br>윤<br>윤<br>418.1<br>(mg/kg) | (9EO - 62)<br>8015M<br>(mg/kg) | (C10 - C28) | (mg/kg)<br>Motor Oil<br>(C22 - C36) | 8260B<br>(µg/kg) | (b) 880-Butylbenzene | (hd/kd) | (5) Ethylbenzene | B (sopropylbenzene | (#g/kg)<br>B p-Isopropyltoluene | (mg/kg) Napthalene | (Hd/kd)    | (S) (S) 1,2,4-Trimethylbenzene | 6th<br>87800<br>87000 (A)<br>87000 (B)<br>87000 (B) | 8260B<br>860B<br>(µg/kg) | 2008<br>8260B<br>(µg/kg) |
|------------------|---------------|-------------|--------------|---------------------------------|---------------------------------|--------------------------------|-------------|-------------------------------------|------------------|----------------------|---------|------------------|--------------------|---------------------------------|--------------------|------------|--------------------------------|-----------------------------------------------------|--------------------------|--------------------------|
|                  | KLF-7-5       | 5/20/2013   | 5            | ND (1.1)                        | 86 J                            | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-10      | 5/20/2013   | 10           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-15      | 5/20/2013   | 15           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-20      | 5/20/2013   | 20           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-25      | 5/20/2013   | 25           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-30      | 5/20/2013   | 30           | ND (1.1)                        | 29 J                            | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
| KLF-7            | KLF-7-35      | 5/20/2013   | 35           | ND (1.1)                        | 28 J                            | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
| KLF-/            | KLF-7-40      | 5/20/2013   | 40           | ND (1.1)                        | 28 J                            | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-45      | 5/20/2013   | 45           | ND (1.1)                        | 21 J                            | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-50      | 5/20/2013   | 50           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-55      | 5/20/2013   | 55           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-60      | 5/20/2013   | 60           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-65      | 5/20/2013   | 65           | ND (1.1)                        | ND (18)                         | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
|                  | KLF-7-70      | 5/20/2013   | 70           | ND (1.1)                        | 29 J                            | ND (4)                         | ND (29)     | ND (35)                             | ND (29)          | ND (27)              | ND (28) | ND (30)          | ND (33)            | ND (28)                         | ND (30)            | ND (30)    | ND (25)                        | ND (28)                                             | ND (75)                  | ND (28)                  |
| Screening Valu   |               |             |              |                                 |                                 |                                |             |                                     |                  |                      |         |                  |                    |                                 |                    |            |                                |                                                     |                          |                          |
| CHHSL - Reside   |               |             |              | NL                              | NL                              | NL                             | NL          | NL                                  | NL               | NL                   | NL      | NL               | NL                 | NL                              | NL                 | NL         | NL                             | NL                                                  | NL                       | NL                       |
| CHHSL - Industr  |               |             |              | NL                              | NL                              | NL                             | NL          | NL                                  | NL               | NL                   | NL      | NL               | NL                 | NL                              | NL                 | NL         | NL                             | NL                                                  | NL                       | NL                       |
| RSL - Residentia |               |             |              | 82                              | NL                              | NL                             | 110         | 2,500                               | 3,900,000        | 7,800,000            | NL      | 5,800            | 1,900,000          | NL                              | 3,800              | 3,300,000  | 58,000                         | 780,000                                             | 550,000                  | 650,000                  |
| RSL - Industrial | (µg/kg)^^     |             | _            | 420                             | NL<br>NII                       | NL                             | 600         | 33,000                              | 58,000,000       | 120,000,000          | NL      | 25,000           | 9,900,000          | NL                              | 17,000             | 22,000,000 | 240,000                        | 12,000,000                                          | 2,400,000                | 2,800,000                |
| MSSL (mg/kg)     |               |             |              | 500                             | NL                              | NL                             | 1,000       | 10,000                              | NL               | NL                   | NL      | NL               | NL                 | NL                              | NL                 | NL         | NL                             | NL                                                  | NL                       | NL                       |

Notes: GRO Gasoline range organics (equivalent to total petroleum hydrocarbons as gasoline)

TEPH Total extractable petroleum hydrocarbons

(C9 - C36) Carbon chain range of analysis

DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel)

8015B United States Environmental Protection Agency (US EPA) analytical method number

mg/kg Milligrams per kilogram

μg/kg Micrograms per kilogram

ND Not detected, below the method detection limit, which is shown in parentheses

J Estimated concentration between method detection limit and practical quantitation limit

Peaks in the diesel range but chromatogram does not match that of diesel standard

CHHSL California Human Health Screening Level (January 2005)

NL Not listed

RSL US EPA May 2014 Regional Screening Level (in mg/kg); RSL values for TPH-g, TPH-d, and TPH-o are for Aromatic Low, Medium, and High, respectively

MSSL Los Angeles Regional Water Quality Control Board Maximum Soil Screening Level (2004); MSSL assumes depth to groundwater below sample is between 20 feet and 150 feet

Shading Indicates detected concentration is higher than the MSSL Screening Value or the residental RSL Screening Value

\*\* Screening value converted from mg/kg to μg/kg



# TABLE 5 2013 QUALITY CONTROL SAMPLE ANALYTICAL DATA

FORMER FIGUEROA PUMP STATION 5800 S. FIGUEROA STREET LOS ANGELES, CALIFORNIA

| Sample Number | Lab ID  | Sample Date | GRO       | Oil & Grease | TEPH<br>(C9 - C36) | DRO<br>(C10 - C28) | Motor Oil<br>(C22 - C36) | Volatile Organic<br>Compounds |
|---------------|---------|-------------|-----------|--------------|--------------------|--------------------|--------------------------|-------------------------------|
| Saı           |         | S           | 8015B     | 1664B        | 8015M              | 8015M              | 8015M                    | 8260B                         |
|               |         |             | (mg/L)    | (mg/L)       | (mg/L)             | (mg/L)             | (mg/L)                   | (μg/L)                        |
|               |         |             |           |              |                    |                    |                          | 115 (5 55 5 5 )               |
| QCTB          | LN05576 | 5/13/2013   |           |              |                    |                    |                          | ND (0.07 to 8.4)              |
| QCFB          | LN05595 | 5/13/2013   |           |              |                    |                    |                          | ND (0.07 to 8.4)              |
| QCEB          | LN05577 | 5/13/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
|               |         |             |           |              |                    |                    |                          |                               |
| QCTB          | LN05647 | 5/14/2013   |           |              |                    |                    |                          | ND (0.07 to 8.4)              |
| QCFB          | LN05660 | 5/14/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
| QCEB          | LN05646 | 5/14/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
|               |         |             |           |              |                    |                    |                          |                               |
| QCTB          | LN05738 | 5/15/2013   |           |              |                    |                    |                          | ND (0.07 to 8.4)              |
| QCFB          | LN05752 | 5/15/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
| QCEB          | LN05739 | 5/15/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
|               |         | _           |           |              | _                  |                    |                          |                               |
| QCTB          | LN05826 | 5/16/2013   |           |              |                    |                    |                          | ND (0.07 to 8.4)              |
| QCFB          | LN05824 | 5/16/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
| QCEB          | LN05825 | 5/16/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
|               |         |             |           |              |                    |                    |                          |                               |
| QCTB          | LN05903 | 5/20/2013   |           |              |                    |                    |                          | ND (0.07 to 8.4)              |
| QCFB          | LN05902 | 5/20/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |
| QCEB          | LN05901 | 5/20/2013   | ND (0.04) | ND (0.5)     | ND (0.1)           | ND (0.5)           | ND (0.3)                 | ND (0.07 to 8.4)              |

Notes: GRO Gasoline range organics (equivalent to total petroleum hydrocarbons as gasoline)

TEPH Total extractable petroleum hydrocarbons

(C9 - C36) Carbon chain range of analysis

DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel)

8015B United States Environmental Protection Agency (US EPA) analytical method number

mg/L Milligrams per liter μg/L Micrograms per liter

ND Not detected above the method detection limit, which is shown in parentheses

- - Not analyzed



# **BORE LOGS**

. FILE:

#### SAMPLE/SAMPLER TYPE GRAPHICS



STANDARD PENETRATION SPLIT SPOON SAMPLER (2 in. (50.8 mm.) outer diameter and 1-3/8 in. (34.9 mm.) inner diameter)

#### WELL MATERIAL GRAPHICS

#### WELL BACKFILL MATERIAL GRAPHICS

#### **GROUND WATER GRAPHICS**

- $\nabla$ WATER LEVEL (level where first observed)
- ▼ WATER LEVEL (level after exploration completion)
- $\mathbf{V}$ WATER LEVEL (additional levels after exploration)
- $\sim$ **OBSERVED SEEPAGE**

#### **NOTES**

- 1. The report and log key are an integral part of these logs. All data and interpretations in this log are subject to the explanations and limitations stated in the report.
- 2. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual or differ from those shown.
- 3. No warranty is provided as to the continuity of soil or rock conditions between individual sample locations.
- 4. Logs represent general soil or rock conditions observed at the point of exploration on the date indicated.
- 5. In general, Unified Soil Classification System designations presented on the logs were based on visual classification in the field and were modified where appropriate based on gradation and index property testing.
- 6. Fine grained soils that plot within the hatched area on the Plasticity Chart, and coarse grained soils with between 5% and 12% passing the No. 200 sieve require dual USCS symbols, ie., GW-GM, GP-GM, GW-GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM.
- 7. If sampler is not able to be driven at least 6 inches, 50/X indicates number of blows required to drive the identified sampler X inches with a 140 pound hammer falling 30 inches.

| UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D 2487) |                                                                        |                                                                                  |                                                |                |                                                                                                                |                                                                                                                                                 |
|--------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | sieve)                                                                 | CLEAN<br>GRAVEL<br>WITH                                                          | Cu≥4 and<br>1≤Cc≤3                             |                | GW                                                                                                             | WELL-GRADED GRAVELS,<br>GRAVEL-SAND MIXTURES WITH<br>LITTLE OR NO FINES                                                                         |
|                                                  | larger than the #4                                                     | <5%<br>FINES                                                                     | Cu <4 and/<br>or 1>Cc >3                       |                | GP                                                                                                             | POORLY GRADED GRAVELS,<br>GRAVEL-SAND MIXTURES WITH<br>LITTLE OR NO FINES                                                                       |
|                                                  |                                                                        | GRAVELS<br>WITH<br>5% TO                                                         | Cu≥4 and<br>1≤Cc≤3                             |                | GW-GI                                                                                                          | WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE FINES                                                                                     |
|                                                  |                                                                        |                                                                                  |                                                |                | GW-G                                                                                                           | WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE CLAY FINES                                                                                |
| ieve)                                            | coarse fraction is                                                     | 12%<br>FINES                                                                     | Cu <4 and/                                     |                | GP-GN                                                                                                          | POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE FINES                                                                                   |
| ne #200 si                                       | half of                                                                |                                                                                  | or 1>Cc>3                                      |                | GP-G0                                                                                                          | POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE CLAY FINES                                                                              |
| is larger than the #200 sieve)                   | (More than                                                             |                                                                                  |                                                |                | GM                                                                                                             | SILTY GRAVELS, GRAVEL-SILT-SAND<br>MIXTURES                                                                                                     |
| rial is larç                                     | GRAVELS (                                                              | GRAVELS<br>WITH ><br>12%<br>FINES                                                |                                                |                | GC                                                                                                             | CLAYEY GRAVELS,<br>GRAVEL-SAND-CLAY MIXTURES                                                                                                    |
| If of mate                                       | GR                                                                     |                                                                                  |                                                |                | GC-GI                                                                                                          | CLAYEY GRAVELS,<br>GRAVEL-SAND-CLAY-SILT MIXTURES                                                                                               |
| COARSE GRAINED SOILS (More than half of material | SANDS (More than half of coarse fraction is smaller than the #4 sieve) | CLEAN<br>SANDS<br>WITH<br><5%<br>FINES<br>SANDS<br>WITH<br>5% TO<br>12%<br>FINES | Cu≥6 and<br>1≤Cc≤3                             |                | SW                                                                                                             | WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES                                                                                 |
| OILS (Mo                                         |                                                                        |                                                                                  | Cu <6 and/<br>or 1>Cc >3                       |                | SP                                                                                                             | POORLY GRADED SANDS,<br>SAND-GRAVEL MIXTURES WITH<br>LITTLE OR NO FINES                                                                         |
| AINED S                                          |                                                                        |                                                                                  | Cu≥6 and<br>1≤Cc≤3<br>Cu <6 and/<br>or 1>Cc <3 | •••            | SW-SI                                                                                                          | WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE FINES                                                                                       |
| ARSE GF                                          |                                                                        |                                                                                  |                                                |                | SW-S                                                                                                           | WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE CLAY FINES                                                                                  |
| 000                                              |                                                                        |                                                                                  |                                                |                | SP-SN                                                                                                          | POORLY GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE FINES                                                                                     |
|                                                  |                                                                        |                                                                                  |                                                |                | SP-SC                                                                                                          | POORLY GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE CLAY FINES                                                                                |
|                                                  |                                                                        |                                                                                  |                                                |                | SM                                                                                                             | SILTY SANDS, SAND-GRAVEL-SILT<br>MIXTURES                                                                                                       |
|                                                  | ANDS (M                                                                | SANDS<br>WITH ><br>12%<br>FINES                                                  |                                                |                | sc                                                                                                             | CLAYEY SANDS, SAND-GRAVEL-CLAY<br>MIXTURES                                                                                                      |
|                                                  | 'S                                                                     |                                                                                  |                                                |                | SC-SN                                                                                                          | CLAYEY SANDS, SAND-SILT-CLAY MIXTURES                                                                                                           |
| <u>a</u> .                                       |                                                                        |                                                                                  |                                                | N              | ML INORGANIC SILTS AND VERY FINE SANDS, SILTY ( CLAYEY FINE SANDS, SILTS WITH SLIGHT PLASTIC                   |                                                                                                                                                 |
| FINE GRAINED SOILS  More than half of material   | e g                                                                    | SILTS AND<br>(Liquid L                                                           | imit ///                                       | 1 -            | ·L CI                                                                                                          | ORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY LAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS IORGANIC CLAYS-SILTS OF LOW PLASTICITY, GRAVELLY |
| <b>ED</b> (                                      | is smaller than<br>the #200 sieve)                                     | less than                                                                        |                                                | 4              | -IVIL CI                                                                                                       | LAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS RGANIC SILTS & ORGANIC SILTY CLAYS                                                                   |
| RAIN ha                                          | small<br>#200                                                          |                                                                                  |                                                | 1              | <u>'L</u> 0                                                                                                    | F LOW PLASTICITY IORGANIC SILTS, MICACEOUS OR                                                                                                   |
| _ <b>EG</b><br>e th                              | is s<br>the                                                            | SILTS AND                                                                        |                                                | Ц              | In D                                                                                                           | IATOMACEOUS FINE SAND OR SILT<br>IORGANIC CLAYS OF HIGH PLASTICITY,                                                                             |
|                                                  |                                                                        | (Liquid L<br>greater tha                                                         |                                                | <del>1</del> — | CH INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS OH ORGANIC CLAYS & ORGANIC SILTS OF MEDIUM TO HIGH PLASTICITY |                                                                                                                                                 |



PROJECT NO.: 133805 DRAWN BY: JC CHECKED BY: HAV DATE: 5/30/2013

GRAPHICS KEY

MEDIUM-TO-HIGH PLASTICITY

**PLATE** 

LADWP Figueroa Pump Station (FPS) Los Angeles, CA

B-1

8/6/2013

REVISED:

# GRAIN SIZE

| DESCRIPTION |        | SIEVE<br>SIZE                 | GRAIN<br>SIZE                        | APPROXIMATE<br>SIZE            |
|-------------|--------|-------------------------------|--------------------------------------|--------------------------------|
| Boulders    |        | >12 in. (304.8 mm.)           | >12 in. (304.8 mm.)                  | Larger than basketball-sized   |
| Cobbles     |        | 3 - 12 in. (76.2 - 304.8 mm.) | 3 - 12 in. (76.2 - 304.8 mm.)        | Fist-sized to basketball-sized |
| Gravel      | coarse | 3/4 -3 in. (19 - 76.2 mm.)    | 3/4 -3 in. (19 - 76.2 mm.)           | Thumb-sized to fist-sized      |
| Graver      | fine   | #4 - 3/4 in. (#4 - 19 mm.)    | 0.19 - 0.75 in. (4.8 - 19 mm.)       | Pea-sized to thumb-sized       |
|             | coarse | #10 - #4                      | 0.079 - 0.19 in. (2 - 4.9 mm.)       | Rock salt-sized to pea-sized   |
| Sand        | medium | #40 - #10                     | 0.017 - 0.079 in. (0.43 - 2 mm.)     | Sugar-sized to rock salt-sized |
|             | fine   | #200 - #10                    | 0.0029 - 0.017 in. (0.07 - 0.43 mm.) | Flour-sized to sugar-sized     |
| Fines       |        | Passing #200                  | <0.0029 in. (<0.07 mm.)              | Flour-sized and smaller        |



## Munsell Color

| NAME         | ABBR |
|--------------|------|
| Red          | R    |
| Yellow Red   | YR   |
| Yellow       | Υ    |
| Green Yellow | GY   |
| Green        | G    |
| Blue Green   | BG   |
| Blue         | В    |
| Purple Blue  | PB   |
| Purple       | Р    |
| Red Purple   | RP   |

## **ANGULARITY**

| DESCRIPTION | CRITERIA                                                                       |         |            |            |         |
|-------------|--------------------------------------------------------------------------------|---------|------------|------------|---------|
| Angular     | Particles have sharp edges and relatively plane sides with unpolished surfaces |         |            |            | Dist.   |
| Subangular  | Particles are similar to angular description but have rounded edges            |         |            | T)         |         |
| Subrounded  | Particles have nearly plane sides but have well-rounded corners and edges      |         | $\bigcirc$ |            |         |
| Rounded     | Particles have smoothly curved sides and no edges                              | Rounded | Subrounded | Subangular | Angular |

#### **PLASTICITY**

| PLASTICITY  |         |                                                                                                                                                                                                                                             |  |
|-------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DESCRIPTION | LL      | FIELD TEST                                                                                                                                                                                                                                  |  |
| Non-plastic | NP      | A 1/8-in. (3 mm.) thread cannot be rolled at any water content.                                                                                                                                                                             |  |
| Low (L)     | < 30    | The thread can barely be rolled and the lump or thread cannot be formed when drier than the plastic limit.                                                                                                                                  |  |
| Medium (M)  | 30 - 50 | The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump or thread crumbles when drier than the plastic limit                          |  |
| High (H)    | > 50    | It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump or thread can be formed without crumbling when drier than the plastic limit |  |
|             |         |                                                                                                                                                                                                                                             |  |

#### **MOISTURE CONTENT**

| DESCRIPTION | FIELD TEST                                            |  |
|-------------|-------------------------------------------------------|--|
| Dry         | Absence of moisture, dusty, dry to the touch          |  |
| Moist       | Damp but no visible water                             |  |
| Wet         | Visible free water, usually soil is below water table |  |

#### REACTION WITH HYDROCHLORIC ACID

| DESCRIPTION | FIELD TEST                                         |  |
|-------------|----------------------------------------------------|--|
| None        | No visible reaction                                |  |
| Weak        | Some reaction, with bubbles forming slowly         |  |
| Strong      | Violent reaction, with bubbles forming immediately |  |
|             | •                                                  |  |

#### APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL

| APPARENT<br>DENSITY              | SPT-N <sub>60</sub> | MODIFIED CA<br>SAMPLER | CALIFORNIA<br>SAMPLER | RELATIVE<br>DENSITY |  |  |
|----------------------------------|---------------------|------------------------|-----------------------|---------------------|--|--|
| DENSITI                          | (# blows/ft)        | (# blows/ft)           | (# blows/ft)          | (%)                 |  |  |
| Very Loose                       | <4                  | <4                     | <5                    | 0 - 15              |  |  |
| Loose                            | 4 - 10              | 5 - 12                 | 5 - 15                | 15 - 35             |  |  |
| Medium Dense                     | 10 - 30             | 12- 35                 | 15 - 40               | 35 - 65             |  |  |
| Dense                            | 30 - 50             | 35 - 60                | 40 - 70               | 65 - 85             |  |  |
| Very Dense                       | >50                 | >60                    | >70                   | 85 - 100            |  |  |
| NOTE AFTER TERTACULAND RECK 1010 |                     |                        |                       |                     |  |  |

#### NOTE: AFTER TERZAGHI AND PECK, 1948

#### **CONSISTENCY - FINE-GRAINED SOIL**

| CONSISTENCY | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (Qu)(psf) | CRITERIA                                                       |
|-------------|-------------------------------------------------|----------------------------------------------------------------|
| Very Soft   | < 1000                                          | Thumb will penetrate soil more than 1 in. (25 mm.)             |
| Soft        | 1000 - 2000                                     | Thumb will penetrate soil about 1 in. (25 mm.)                 |
| Firm        | 2000 < 4000                                     | Thumb will indent soil about 1/4-in. (6 mm.)                   |
| Hard        | 4000 < 8000                                     | Thumb will not indent soil but readily indented with thumbnail |
| Very Hard   | > 8000                                          | Thumbnail will not indent soil                                 |

## **STRUCTURE**

gINT FILE:

| DESCRIPTION  | CRITERIA                                                                                                                     |
|--------------|------------------------------------------------------------------------------------------------------------------------------|
| Stratified   | Alternating layers of varying material or color with layers at least 1/4-in. thick, note thickness                           |
| Laminated    | Alternating layers of varying material or color with the layer less than 1/4-in. thick, note thickness                       |
| Fissured     | Breaks along definite planes of fracture with little resistance to fracturing                                                |
| Slickensided | Fracture planes appear polished or glossy, sometimes striated                                                                |
| Blocky       | Cohesive soil that can be broken down into small angular lumps which resist further breakdown                                |
| Lensed       | Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay; note thickness |
| Homogeneous  | Same color and appearance throughout                                                                                         |

## **CEMENTATION**

| DESCRIPTION | FIELD TEST                                                 |
|-------------|------------------------------------------------------------|
| Weakly      | Crumbles or breaks with handling or slight finger pressure |
|             | Crumbles or breaks with considerable finger pressure       |
| Strongly    | Will not crumble or break with finger pressure             |



| PROJECT NO.: | 133805    |
|--------------|-----------|
| DRAWN BY:    | JC        |
| CHECKED BY:  | HAV       |
| DATE:        | 5/30/2013 |

REVISED:

SOIL DESCRIPTION KEY

LADWP Figueroa Pump Station (FPS)
Los Angeles, CA

PLATE

B-2

8/6/2013

| Plung<br>Weath   | ge:<br>her:       | Datum:      | -90<br>Cle    | D83 -<br>degreear, ve        | ees                 | 288             |               |                               |                     |                                                   |                                          |                   |
|------------------|-------------------|-------------|---------------|------------------------------|---------------------|-----------------|---------------|-------------------------------|---------------------|---------------------------------------------------|------------------------------------------|-------------------|
| Meath (feet)     | her:              | ed          | Cle           |                              |                     |                 |               | Drilling Equipment:           | CME-75              | <u> </u>                                          | Hammer Type - Drop: 140                  | lb. Auto - 30 in. |
| Elevation (feet) |                   | ed 2        |               | ear, ve                      |                     |                 |               | Drilling Method:              |                     | Stem Auger                                        |                                          |                   |
|                  | oth (feet)        | be          | _ [           |                              | ry hot              |                 |               | Bit Type - Auger Dia.:        |                     |                                                   |                                          |                   |
|                  | oth (feet)        | be g        | _             |                              | ا خ                 |                 |               | FIL                           | ELD EXPLO           | RATION                                            |                                          |                   |
|                  | oth (fe           |             |               | Recovery<br>(NR=No Recovery) | Uncorr. blows/6 in. | (mdd)           | l Log         |                               |                     | Northing: 1,<br>Easting: 6,<br>Surveyed Surface E | 476,096.2                                |                   |
|                  |                   | Sample Type |               | Recovery<br>NR=No F          | Jncorr. t           | PID / FID (ppm) | Graphical Log |                               |                     | Surface Conditio                                  |                                          |                   |
| 145              |                   | 0) 0        | ,             | ш 🗸                          |                     | _               |               | Slurry fill material from pre | vious reserv        | oir excavation                                    |                                          |                   |
|                  | -<br>-<br>-<br>5- |             |               |                              |                     |                 |               |                               |                     |                                                   |                                          |                   |
| 140              | -                 |             |               |                              |                     |                 |               |                               |                     |                                                   |                                          |                   |
|                  | 10-               |             | _             | 10                           | 0                   | 075             |               | Silty SAND (SM): fine-grai    | ined sand, o        | live gray (5Y-4/2), st                            | rong hydrocarbon odor, moist, loos       | e to medium dense |
|                  | _                 |             |               | 18<br>in.                    | 2<br>4<br>6         | 275             |               |                               |                     |                                                   |                                          |                   |
| 135              | -<br>-<br>15      | KLF-        | 1-15          | 18<br>in.                    | 6<br>11<br>13       | 850             |               | -Becomes medium dense         |                     |                                                   |                                          |                   |
|                  | 20-               | KLF-        | 1-20          | 18<br>in.                    | 7<br>15<br>22       | 2.0             |               | Well-Graded SAND (SW):        | : fine-grained      | d sand, olive brown (                             | 2.5Y-4/3), no odor, moist, dense         |                   |
| 125<br>120       | -<br>25<br>-<br>- | KLF-        | 1-25          | 18<br>in.                    | 6<br>8<br>9         | 1.9             |               | -Becomes olive yellow (2.5    | 5Y-6/6), med        | lium dense                                        |                                          |                   |
|                  | -                 |             |               |                              |                     |                 |               | Clayey SAND (SC): fine-gr     | rained sand,        | , olive brown (2.5Y-4                             | /3), moist, medium dense                 |                   |
|                  |                   |             |               |                              |                     |                 |               |                               | 133805              | BORIN                                             | NG LOG KLF-1                             | PLATE             |
|                  | K                 | LE.         | ∖<br><b>/</b> |                              |                     |                 |               | <u>.  </u>                    | JC<br>HAV<br>0/2013 |                                                   | eroa Pump Station (FPS)<br>s Angeles, CA | B-3               |

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1 Date Begin - End: 5/13/2013 - 5/13/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-1 Drill Crew:** Logged By: TWM Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, very hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) PID / FID (ppm) Northing: 1,818,663.3 Graphical Log Sample Type Easting: 6,476,096.2 Depth (feet) Surveyed Surface Elevation (ft.): 147.3 Surface Condition: Slurry Backfill 18 in. KLF-1-30 Clayey SAND (SC): fine-grained sand, olive brown (2.5Y-4/3), moist, medium dense \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_ -115 35 KLF-1-35 6 1.0 Silty SAND (SM): fine-grained sand, olive brown (2.5Y-4/3), moist, medium dense 10 12 -110 40 KLF-1-40 18 in. 0.0 5 -Becomes rounded sand 16 -105 rev6\_10112013.gpj 45 KLF-1-45 18 in. 0.0 10 -100 //riverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs. 50 KLF-1-50 18 in 9 0.6 Poorly-Graded SAND (SP): fine-grained, subrounded sand, olive yellow (2.5Y-6/6), moist, dense 18 25 -95 55 KLF-1-55 0.0 -Becomes rounded sand, olive gray (5Y-4/2), medium dense 11 8 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-1** DRAWN BY: JC KLEINFELDER CHECKED BY: B-3 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA - FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 2 of 4

Date Begin - End: 5/13/2013 - 5/13/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-1** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, very hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) PID / FID (ppm) Northing: 1,818,663.3 Graphical Log Sample Type Easting: 6,476,096.2 Depth (feet) Surveyed Surface Elevation (ft.): 147.3 Surface Condition: Slurry Backfill 18 in. KLF-1-60 6 0.0 Poorly-Graded SAND (SP): fine-grained, subrounded sand, olive yellow (2.5Y-6/6), moist, dense 26 -Becomes subrounded sand, olive brown (2.5Y-4/3), very dense 26 -85 65 KLF-1-65 10 0.0 -Becomes dense 15 17 -80 -Hard drilling probably due to coarse gravel or rock 70 KLF-1-70 Poorly-Graded SAND with Gravel (SP): coarse-grained, subrounded sand, olive yellow (2.5Y-6/6), moist, very 0.0 34 50/6" dense -75 75 KLF-1-75 17 in. 37 0.0 -Becomes granitic gravel, olive brown (2.5Y-4/3) 38 50/5" -70 80 KLF-1-80 18 0.0 10 √50/4" -65 85 KLF-1-85 16 0.0 -Becomes olive yellow (2.5Y-6/5) 35 47 -60 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-1** DRAWN BY: JC KLEINFELDER B-3 CHECKED BY: HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 3 of 4

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1

\\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\

rev6\_10112013.gpj

Station\133805 Boring Logs\_

\\riverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1 Date Begin - End: 5/13/2013 - 5/13/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-1** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, very hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery Sample Number Uncorr. blows/6 Surveyed Elevation (feet) PID / FID (ppm) Northing: 1,818,663.3 Graphical Log Easting: 6,476,096.2 Depth (feet) Surveyed Surface Elevation (ft.): 147.3 Sample Surface Condition: Slurry Backfill KLF-1-90 14 Well-Graded SAND (SW): fine- to medium-grained, subrounded sand, moist, very dense 40 \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_ GROUNDWATER LEVEL INFORMATION:
Groundwater was not encountered during drilling or after completion.
GENERAL NOTES: -55 The exploration was terminated approximately 91.5 feet below ground TD = 91.5'. No apparent groundwater encountered. Boring backfilled with grout/portland mix (approx. 145 gallons). The exploration location and elevation were surveyed by LADWP. 95 -50 100 -45 Wriverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj 105 40 110 -35 115 -30 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-1** DRAWN BY: JC KLEINFELDER B-3 CHECKED BY: HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA - FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 4 of 4

Date Begin - End: 5/14/2013 - 5/14/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-2** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot, slight breeze Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,640.2 Graphical Log Sample Type Easting: 6,476,107.9 Depth (feet) Surveyed Surface Elevation (ft.): 147.6 Surface Condition: Slurry Backfill Slurry fill material from previous reservoir excavation -145 140 10 KLF-2-10 18 in. Silty SAND (SM): subrounded sand, very dark grayish brown (10YR-3/2), strong hydrocarbon odor and staining, 110 3 moist, loose 6 -135 KLF-2-15 0.5 -Becomes dark yellowish brown (10YR-3/4), no odor or staining, medium dense 18 in. 5 10 -130 20 KLF-2-20 18 in. 6 0.1 -Becomes fine-grained, brown (10YR-4/3), medium dense to dense 13 17 125 25 KLF-2-25 Well-Graded SAND (SW): subrounded sand, brown (10YR-4/3), moist, medium dense 0.1 9 120 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-2** DRAWN BY: JC KLEINFELDER CHECKED BY: B-4 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 1 of 3

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1

"KLEINFELDER.COM/SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_

rev6\_10112013.gpj

//riverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs.

Date Begin - End: 5/14/2013 - 5/14/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-2** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot, slight breeze Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,640.2 Graphical Log Sample Type Easting: 6,476,107.9 Depth (feet) Surveyed Surface Elevation (ft.): 147.6 Surface Condition: Slurry Backfill 18 in. KLF-2-30 Silty SAND (SM): brown (10YR-5/3), moist, loose to medium dense, non-plastic to low plasticity fines -115 35 KLF-2-35 0.0 Poorly-Graded SAND (SP): fine-grained, subrounded sand, brown (10YR-5/3), moist, medium dense 8 -110 40 KLF-2-40 18 in. 0.0 -Becomes brown (7.5YR-4/3) 12 -105 45 KLF-2-45 Silty SAND (SM): fine-grained, subrounded sand, brown (7.5YR-4/3), moist, medium dense 18 in. 5 0.1 10 9 -100 50 KLF-2-50 18 in 9 0.1 Poorly-Graded SAND (SP): fine-grained, subrounded sand, brown (7.5YR-4/2), moist, dense 16 20 95 55 KLF-2-55 Silty SAND (SM): fine-grained sand, brown (10YR-4/3), moist, medium dense 5 0.1 11 14 -90 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-2** DRAWN BY: JC KLEINFELDER CHECKED BY: B-4 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 2 of 3

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1

\\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_

rev6\_10112013.gpj

//riverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs.

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1 Date Begin - End: 5/14/2013 - 5/14/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-2** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot, slight breeze Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,640.2 Log Easting: 6,476,107.9 Depth (feet) Surveyed Surface Elevation (ft.): 147.6 Graphical Sample Surface Condition: Slurry Backfill 18 in. KLF-2-60 4 0.2 Poorly-Graded SAND with Clay (SP-SC): fine-grained, dark grayish brown (10YR-3/2), moist, medium dense 10 \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\ -85 65 KLF-2-65 18 in. 6 0.0 Silty SAND (SM): fine-grained sand, dark brown (10YR-3/3), moist, medium dense 11 18 GROUNDWATER LEVEL INFORMATION:
Groundwater was not encountered during drilling or after completion. -80 The exploration was terminated approximately 66.5 feet below ground **GENERAL NOTES:** surface. TD = 66.5'. No apparent groundwater encountered. Boring backfilled with grout/portland mix (approx. 90 gallons). The exploration location and elevation were surveyed by LADWP. 70 -75 rev6\_10112013.gpj 75 Ladwp Figueroa Pump Station\133805 Boring Logs\_ 70 80 -65 85 \\riverside\riverside-Data\users\projects\133805 --60 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-2** DRAWN BY: JC KLEINFELDER CHECKED BY: B-4 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA r FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 3 of 3

Date Begin - End: 5/15/2013 - 5/15/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-3 Drill Crew:** Logged By: TWM Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Partly cloudy, warm Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,664.2 Graphical Log Sample Type Easting: 6,476,116.1 Depth (feet) Surveyed Surface Elevation (ft.): 148.2 Surface Condition: Slurry Backfill Slurry fill material from previous reservoir excavation 145 140 10 KLF-3-10 Silty SAND (SM): very dark grayish brown (10YR-3/2), moist, loose 18 in. 0.0 2 3 -135 KLF-3-15 0.0 -Becomes fine-grained, subrounded sand, dark yellowish brown (10YR-3/4), moist, medium dense 18 in. 11 130 20 KLF-3-20 18 in. 6 0.0 Poorly-Graded SAND (SP): fine-grained, subrounded sand, brown (10YR-4/3), moist, dense 14 17 125 25 KLF-3-25 0.0 -Becomes brown (7.5YR-5/2), medium dense 8 120 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-3** DRAWN BY: JC KLEINFELDER CHECKED BY: B-5 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 1 of 3

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1

"KLEINFELDER.COM/SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_

Wriverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1 Date Begin - End: 5/15/2013 - 5/15/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-3 Drill Crew:** Logged By: TWM Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Partly cloudy, warm Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,664.2 Graphical Log Sample Type Easting: 6,476,116.1 Depth (feet) Surveyed Surface Elevation (ft.): 148.2 Surface Condition: Slurry Backfill 18 in. KLF-3-30 Silty SAND (SM): fine-grained, brown (7.5YR-4/3), moist, loose to medium dense, low plasticity, trace clay \\\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_ 115 35 KLF-3-35 Poorly-Graded SAND (SP): subrounded sand, brown (7.5YR-4/3), moist, medium dense 8 0.0 8 -110 40 KLF-3-40 18 in. 0.0 -Becomes fine-grained sand 11 -105 Wriverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj 45 KLF-3-45 18 in. 0.2 5 100 50 KLF-3-50 18 in. 0.2 10 11 -95 55 KLF-3-55 18 in. 0.3 8 90 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-3** DRAWN BY: JC KLEINFELDER CHECKED BY: B-5 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA - FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 2 of 3

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1 Date Begin - End: 5/15/2013 - 5/15/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-3** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Partly cloudy, warm Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,664.2 Graphical Log Easting: 6,476,116.1 Depth (feet) Surveyed Surface Elevation (ft.): 148.2 Sample Surface Condition: Slurry Backfill 18 in. KLF-3-60 6 Sandy Lean CLAY (CL): brown (7.5YR-4/3), moist, firm, medium plasticity fines 16 \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\ -85 65 KLF-3-65 18 in. 8 0.1 Silty SAND (SM): fine-grained sand, brown (7.5YR-4/3), medium dense 10 GROUNDWATER LEVEL INFORMATION:
Groundwater was not encountered during drilling or after completion. The exploration was terminated approximately 66.5 feet below ground -80 **GENERAL NOTES:** TD = 66.5'. No apparent groundwater encountered. Boring backfilled with grout/portland mix (approx. 120 gallons). The exploration location and elevation were surveyed by LADWP. 70 75 Wriverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj 75 80 -65 85 -60 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-3** DRAWN BY: JC KLEINFELDER CHECKED BY: B-5 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA - FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 3 of 3

| 1                            |               | _           | End:          | 5/16/20                      | 13 - 5/            | 16/20            | 13_           | Drilling Company:                                    | Martini Drilling                           | В                                                                       | ORING LOG KLF-4       |
|------------------------------|---------------|-------------|---------------|------------------------------|--------------------|------------------|---------------|------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|-----------------------|
| 1 -                          | ged           | -           | _             | TWM                          | <b></b>            | D00              |               | Drill Crew:                                          | OME 75                                     | T B 440                                                                 |                       |
|                              |               |             | atum:         | NAD83                        |                    | D88              | _             | Drilling Equipment:                                  | CME-75                                     | Hammer Type - Drop: 140                                                 | b. Auto - 30 in.      |
| 1                            | nge:<br>ather |             | -             | -90 deg                      |                    | warm             |               | Drilling Method:                                     | Hollow Stem Auger  Hollow Stem - 6 in. O.D |                                                                         |                       |
| vvec                         | atiriei       | Ť           |               | raitiy                       | uriry,             | waiiii           |               |                                                      | ELD EXPLORATION                            | ·                                                                       |                       |
|                              |               |             |               | 5                            | <u>:</u>           |                  |               |                                                      |                                            |                                                                         |                       |
| Surveyed<br>Elevation (feet) | Depth (feet)  | Sample Type | Sample Number | Recovery<br>(NR=No Recovery) | Uncorr. blows/6 in | PID / FID (ppmv) | Graphical Log |                                                      | Easting:<br>Surveyed Surface               | 1,818,638.7<br>6,476,080.8<br>Elevation (ft.): 152.2<br>Condition: Soil |                       |
| -<br>-<br>-150               |               | _           |               |                              |                    |                  |               | Fill:<br>Poorly-Graded SAND wit                      | th Silt (SP-SM): fine-grained sa           | and, brown (7.5YR-5/3), dry, loose, wit                                 | n construction debris |
| -<br>-<br>-<br>-<br>-145     | 5-            |             | KLF-4-5       | 5 18 in.                     | 2 3 5              | 0.0              |               | -No construction debris at<br>Poorly-Graded SAND wit |                                            | and, brown (7.5YR-5/3), dry, loose                                      |                       |
| -<br>-<br>-<br>-<br>-140     | 10-           | -           | KLF-4-1       | 0 18 in.                     | 4 6 7              | 0.0              |               | Poorly-Graded SAND (SI                               | <b>P)</b> : fine-grained sand, light redo  | lish brown (7.5YR-6/3), dry, medium de                                  | ense                  |
| -<br>-<br>-<br>-135          | 15-           | _           | KLF-4-1       | 5 18 in.                     | 1 3 4              | 0.0              |               | Silty SAND (SM): fine-gra                            | iined, subrounded sand, brown              | (7.5YR-4/3), moist, loose                                               |                       |
| -<br>-<br>-130               | 20-           | -           | KLF-4-2       | 0 18 in.                     | 4 9 12             | 0.0              |               | Poorly-Graded SAND (SI                               | <b>P)</b> : fine-grained sand, brown (7    | .5YR-4/3), moist, medium dense                                          |                       |
| -<br>-<br>-125<br>-          | 25-           | -           | KLF-4-2       | 5 18 in.                     | 8<br>14<br>19      | 0.0              |               | -Becomes dense                                       |                                            |                                                                         |                       |
|                              |               |             |               | \                            |                    | _                | [223/222]     | DRAWN BY:                                            | JC                                         | ING LOG KLF-4                                                           | PLATE                 |
|                              | K             |             | .EII<br>Brig  | <b>V</b> /- ,<br>iht Peop    |                    |                  |               | <i>ns.</i> DATE: 5/3                                 |                                            | ueroa Pump Station (FPS)<br>os Angeles, CA                              | B-6                   |

gINT FILE: \https://iviverside/-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boning Logs\_rev6\_10112013.gpj \https://KLEINFELDER.COM/SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1

Date Begin - End: 5/16/2013 - 5/16/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-4** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Partly sunny, warm Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,638.7 Graphical Log Sample Type Easting: 6,476,080.8 Depth (feet) Surveyed Surface Elevation (ft.): 152.2 Surface Condition: Soil 18 in. KLF-4-30 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-4/3), moist, medium dense -Becomes medium dense -120 35 KLF-4-35 Sandy SILT (ML): brown (7.5YR-5/3), moist, firm, low plasticity 3 0.0 3 115 40 KLF-4-40 18 in. 0.0 SILT with Sand (ML): brown (7.5YR-4/3), moist, firm, low plasticity 12 -110 45 KLF-4-45 0.0 Silty SAND (SM): fine-grained sand, brown (7.5YR-5/3), moist, medium dense 18 in. 11 14 105 50 KLF-4-50 18 in. 0.0 -Becomes brown (7.5YR-4/3) 9 11 100 55 KLF-4-55 0.0 8 in. 8 -Slight decrease in moisture 12 13 -95 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-4** DRAWN BY: JC KLEINFELDER CHECKED BY: B-6 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 2 of 3

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1

\\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_

rev6\_10112013.gpj

Station\133805 Boring Logs\_

Ladwp Figueroa Pump

\\riverside\riverside-Data\users\projects\133805 -

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1 Date Begin - End: 5/16/2013 - 5/16/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-4** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Partly sunny, warm Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,638.7 Graphical Log Easting: 6,476,080.8 Depth (feet) Surveyed Surface Elevation (ft.): 152.2 Sample Surface Condition: Soil 18 in. KLF-4-60 SILT (ML): dark gray (7.5YR-4/1), firm, trace sand, low plasticity fines \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\ -90 65 KLF-4-65 Poorly-Graded SAND with Clay (SP-SC): fine-grained sand, brown (7.5YR-4/2), moist, medium dense 5 0.0 13 16 -85 70 KLF-4-70 18 in. Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-5/3), moist, medium dense 8 0.0 13 GROUNDWATER LEVEL INFORMATION:
Groundwater was not encountered during drilling or after completion. -80 The exploration was terminated approximately 71.5 feet below ground **GENERAL NOTES** Hand augered to 5 feet below ground surface before switching to hollow Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj TD = 71.5'. No apparent groundwater encountered. Boring backfilled with grout/portland mix (approx. 120 gallons). The exploration location and elevation were surveyed by LADWP. 75 -75 80 85 \\riverside\riverside-Data\users\projects\133805 --65 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-4** DRAWN BY: JC KLEINFELDER CHECKED BY: B-6 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA r FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 3 of 3

| Log                          | e Beg<br>ged l<br>Ver | Ву:         | _             | TWM       | 013 - 5/<br>B - NAV |                  | 13_           | Drilling Company: Drill Crew:     | Marti<br>———————————————————————————————————— | ni Drilling                                                      |                                          | ORING LOG KLF      |
|------------------------------|-----------------------|-------------|---------------|-----------|---------------------|------------------|---------------|-----------------------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------------------|--------------------|
|                              |                       | t. Da       | _             |           |                     | D88              | _             | Drilling Equipment:               |                                               |                                                                  | Hammer Type - Drop: 140                  | ib. Auto - 30 in.  |
|                              | nge:                  | _           | _             | -90 deg   |                     |                  | _             | Drilling Method:                  |                                               | w Stem Auger                                                     |                                          |                    |
| wea                          | ather                 | :<br>       | _             | Partity   | sunny,              | wariii           |               | Bit Type - Auger Dia.             |                                               | PLORATION                                                        |                                          |                    |
|                              |                       | Н           |               |           | _ <u>_</u>          |                  |               | 1 11                              | LLD LXI                                       | LONATION                                                         |                                          |                    |
| Surveyed<br>Elevation (feet) | Depth (feet)          | Sample Type | Sample Number | Recovery  | Uncorr. blows/6 in. | PID / FID (ppmv) | Graphical Log |                                   |                                               | Northing: 1,<br>Easting: 6,<br>Surveyed Surface E<br>Surface Cor | 476,067.3<br>Elevation (ft.): 152.2      |                    |
| Sun                          | Dep                   | San         | San           | Rec       | S S                 | PID              | Gra           |                                   |                                               |                                                                  |                                          |                    |
| -150                         | -                     | -           |               |           |                     |                  |               | Fill:<br>Silty SAND (SM): brown ( | 10YR-4/3                                      | 3), moist, loose, with cor                                       | nstruction debris (brick, etc.) related  | to former building |
|                              | 5-                    | H           | KLF-5-5       | 18        | 1                   | 0.0              |               |                                   |                                               |                                                                  |                                          |                    |
| -                            | -                     | A           |               | in.       | 2                   |                  |               |                                   |                                               |                                                                  |                                          |                    |
| -145                         | -                     | П           |               |           | 3                   | 1                |               |                                   |                                               |                                                                  |                                          |                    |
|                              | -                     |             |               |           |                     |                  |               |                                   |                                               |                                                                  |                                          |                    |
|                              | 10-                   |             |               |           |                     |                  |               |                                   |                                               |                                                                  |                                          |                    |
|                              |                       |             | KLF-5-10      | 18<br>in. | 2                   | 0.0              |               | Well-Graded SAND (SW)             | : subrour                                     | nded sand, brown (7.5Yf                                          | R-4/3), moist, medium dense              |                    |
|                              |                       |             |               |           | 7_                  | 4                |               |                                   |                                               |                                                                  |                                          |                    |
| -140                         | -<br>15-              |             | KLF-5-15      |           |                     | 0.0              |               | Silty SAND with Gravel (          | <b>SM)</b> : fine                             | e-grained, reddish brown                                         | (5YR-4/4), moist, loose, possible so     | sil fill           |
| -135<br>-                    | -<br>-<br>-           | -           |               | in.       | 3 5                 | ,                |               |                                   |                                               |                                                                  |                                          |                    |
|                              | 20-                   | Н           | KLF-5-20      | 18        | 4                   | 0.0              |               | Silty SAND (SM): fine gra         | inod sub                                      | prounded sand brown (7                                           | 7.5YR-4/4), moist, medium dense          |                    |
| _                            | -                     |             | NEI 3-20      | in.       | 8                   | 0.0              |               | Sitty CARD (SWI). IIIIe-gra       | iou, sul                                      | oroanaca sana, biowii (7                                         | .o , moist, medium dense                 |                    |
| -130                         | -                     |             |               |           | 14                  | <i>,</i>         |               |                                   |                                               |                                                                  |                                          |                    |
|                              | 25-                   | $\forall$   | KLF-5-25      | 18<br>in. |                     | 0.0              |               | Poorly-Graded SAND wit            | th Silt (S                                    | P-SM): fine-grained, sub                                         | prounded sand, moist, dense              |                    |
|                              | -                     |             |               |           | 15                  |                  |               |                                   |                                               |                                                                  |                                          |                    |
| -125                         | -                     | $\mid \mid$ |               |           |                     |                  |               |                                   |                                               |                                                                  |                                          |                    |
|                              | -                     | $\mid \mid$ |               |           |                     |                  |               |                                   |                                               |                                                                  |                                          |                    |
|                              | -                     |             |               |           |                     |                  |               |                                   |                                               |                                                                  |                                          |                    |
|                              |                       |             |               |           |                     |                  |               |                                   |                                               |                                                                  |                                          | 1                  |
|                              |                       |             |               |           |                     |                  |               | PROJECT NO.:                      | 133805                                        | BORIN                                                            | NG LOG KLF-5                             | PLATE              |
|                              |                       |             |               |           |                     |                  |               | DRAWN BY:                         | JC                                            |                                                                  |                                          |                    |
|                              | K                     | 1           | EII           | VF        | E/                  | $\Box$           | E             | CHECKED BY:                       | HAV                                           | I ADVAD E                                                        | orea Duman Otation (EDO)                 | B-7                |
| 1                            | _ •                   |             |               |           | ole. Rig            |                  |               | ae                                | 0/2013                                        |                                                                  | eroa Pump Station (FPS)<br>s Angeles, CA |                    |
| 1                            |                       |             |               |           |                     |                  |               | 57.11.2.1                         |                                               |                                                                  |                                          |                    |
|                              |                       |             |               |           |                     |                  |               | LICTIOED: //I                     | 9/2013                                        |                                                                  |                                          | PAGE: 1 d          |

Date Begin - End: 5/16/2013 - 5/16/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-5** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Partly sunny, warm Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,655.7 Graphical Log Sample Type Easting: 6,476,067.3 Depth (feet) Surveyed Surface Elevation (ft.): 152.2 Surface Condition: Soil 18 in. KLF-5-30 0.0 Poorly-Graded SAND (SP): fine-grained, subrounded sand, brown (10YR-5/3), moist, medium dense 10 -120 35 KLF-5-35 2 0.0 -Becomes brown (7.5YR-5/3), decreased moisture, loose to medium dense 115 40 KLF-5-40 Silty SAND (SM): fine-grained sand, brown (7.5YR-4/3), moist, medium dense 18 in. 0.0 6 9 -110 45 KLF-5-45 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-5/3), moist, medium dense 18 in. 13 105 50 KLF-5-50 18 in 0.0 Silty SAND (SM): fine-grained, subrounded sand, brown (7.5YR-4/3), moist, medium dense 11 13 100 55 KLF-5-55 0.0 -Becomes brown (7.5YR-4/2), decreased moisture 14 16 -95 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-5** DRAWN BY: JC KLEINFELDER CHECKED BY: B-7 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 2 of 3

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1

\\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\

rev6\_10112013.gpj

Station\133805 Boring Logs\_

\\riverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump

r FILE:

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1 Date Begin - End: 5/16/2013 - 5/16/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-5** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Partly sunny, warm Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,655.7 Graphical Log Easting: 6,476,067.3 Depth (feet) Surveyed Surface Elevation (ft.): 152.2 Sample Surface Condition: Soil 18 in. KLF-5-60 6 0.0 SILT with Sand (ML): dark gray (7.5YR-4/1), moist, firm 12 14 \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\ -90 65 KLF-5-65 3 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-4/3), moist, medium dense 6 -85 70 KLF-5-70 18 in. 0.0 6 -Becomes subrounded sand 12 16 GROUNDWATER LEVEL INFORMATION:
Groundwater was not encountered during drilling or after completion. -80 The exploration was terminated approximately 71.5 feet below ground **GENERAL NOTES** Hand augered to 5 feet below ground surface before switching to hollow Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj TD = 71.5'. No apparent groundwater encountered. Boring backfilled with grout/portland mix (approx. 120 gallons). The exploration location and elevation were surveyed by LADWP. 75 -75 80 85 \\riverside\riverside-Data\users\projects\133805 --65 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-5** DRAWN BY: JC KLEINFELDER CHECKED BY: B-7 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA r FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 3 of 3

Date Begin - End: 5/20/2013 - 5/20/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-6** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,689.2 Graphical Log Sample Type Easting: 6,476,087.2 Depth (feet) Surveyed Surface Elevation (ft.): 152.8 Surface Condition: Soil Asphalt (12 inches) Fill: Silty SAND (SM): with construction debris 150 KLF-6-5 Silty SAND with Gravel (SM): dark yellowish brown (10YR-4/4), dry, loose, possible fill material 0.1 2 3 -145 10 KLF-6-10 18 in. 0.1 Poorly-Graded SAND (SP): fine- to medium-grained, subrounded sand, yellowish brown (10YR-5/4), dry, medium 5 dense 10 140 KLF-6-15 0.2 18 in. -Becomes loose 2 4 135 20 KLF-6-20 18 in 0.1 Silty SAND (SM): subrounded sand, brown (7.5YR-4/3), moist, medium dense 10 130 25 KLF-6-25 0.2 -Becomes brown (7.5YR-5/3), dense 17 21 125 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-6** DRAWN BY: JC KLEINFELDER CHECKED BY: B-8 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 1 of 3

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1

\\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_

Wriverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj

Date Begin - End: 5/20/2013 - 5/20/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-6** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,689.2 Graphical Log Sample Type Easting: 6,476,087.2 Depth (feet) Surveyed Surface Elevation (ft.): 152.8 Surface Condition: Soil 18 in. KLF-6-30 0.2 Poorly-Graded SAND (SP): fine-grained, subrounded sand, brown (7.5YR-5/3), moist, medium dense 10 120 35 KLF-6-35 Sandy SILT (ML): brown (7.5YR-5/4), moist, firm, trace clay, low plasticity fines 2 0.2 3 -115 40 KLF-6-40 18 in. 0.1 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-5/3), moist, medium dense 12 9 110 45 KLF-6-45 0.2 SILT with Sand (ML): fine-grained sand, brown (7.5YR-4/3), moist, firm, slightly micaceous 18 in. 8 105 50 KLF-6-50 18 in. 0.1 -Becomes firm 9 100 55 KLF-6-55 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-5/3), moist, dense 0.1 15 18 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-6** DRAWN BY: JC KLEINFELDER CHECKED BY: B-8 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 2 of 3

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1

"KLEINFELDER.COM/SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_

Wriverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1 Date Begin - End: 5/20/2013 - 5/20/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-6** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,689.2 Graphical Log Easting: 6,476,087.2 Depth (feet) Surveyed Surface Elevation (ft.): 152.8 Sample Surface Condition: Soil 18 in. KLF-6-60 4 SILT with Sand (ML): dark grayish brown (10YR-4/2), moist, hard, micaceous 18 13 \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\ 90 65 KLF-6-65 Silty SAND (SM): fine- to medium-grained sand, brown (10YR-4/3), moist, medium dense, micaceous 0.5 11 -85 70 KLF-6-70 18 in. 0.5 Poorly-Graded SAND (SP): fine- to medium-grained sand, brown (7.5YR-5/3), moist, medium dense 6 11 16 GROUNDWATER LEVEL INFORMATION:
Groundwater was not encountered during drilling or after completion. The exploration was terminated approximately 71.5 feet below ground -80 **GENERAL NOTES** Hand augered to 5 feet below ground surface before switching to hollow Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj TD = 71.5'. No apparent groundwater encountered. Boring backfilled with grout/portland mix (approx. 120 gallons). The exploration location and elevation were surveyed by LADWP. 75 75 80 85 \\riverside\riverside-Data\users\projects\133805 -65 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-6** DRAWN BY: JC KLEINFELDER CHECKED BY: B-8 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA r FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 3 of 3

Date Begin - End: 5/20/2013 - 5/20/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-7** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,637.8 Graphical Log Sample Type Easting: 6,476,128.9 Depth (feet) Surveyed Surface Elevation (ft.): 152.0 Surface Condition: Asphalt Silty SAND (SM): brown (7.5YR-4/3), dry, very loose, trace gravel 150 KLF-7-5 0.0 145 10 KLF-7-10 18 in. 0.0 Poorly-Graded SAND (SP): fine-grained, subrounded sand, brown (7.5YR-5/3), moist, medium dense 10 140 15 KLF-7-15 2 0.0 Silty SAND (SM): fine-grained sand, brown (7.5YR-4/3), moist, loose, micaceous 18 in. 2 5 135 20 KLF-7-20 18 in. 0.0 Poorly-Graded SAND with Silt (SP-SM): fine-grained sand, brown (7.5YR-4/3), moist, medium dense 9 130 25 KLF-7-25 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-4/3), moist, dense 17 19 125 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-7** DRAWN BY: JC KLEINFELDER CHECKED BY: B-9 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 1 of 3

KLEINFELDER\BENTLEY\GINT\ARCHIVED FILES\KLF GINT STANDARD R1

"KLEINFELDER.COM/SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\\_

Wriverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump Station\133805 Boring Logs\_rev6\_10112013.gpj

Date Begin - End: 5/20/2013 - 5/20/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-7** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,637.8 Graphical Log Sample Type Easting: 6,476,128.9 Depth (feet) Surveyed Surface Elevation (ft.): 152.0 Surface Condition: Asphalt 18 in. KLF-7-30 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-4/3), moist, dense -Becomes brown (7.5YR-5/3), moist, medium dense 120 35 KLF-7-35 3 0.6 SILT (ML): brown (7.5YR-4/3), moist, firm, trace clay, non-plastic to low plasticity fines 115 40 KLF-7-40 18 in. 0.0 Poorly-Graded SAND with Silt (SP-SM): fine-grained sand, brown (7.5YR-4/3), moist, medium dense 9 110 45 KLF-7-45 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-4/4), moist, medium dense 12 in. 5 11 16 105 50 KLF-7-50 18 in 5 0.0 Sandy SILT (ML) to Silty SAND (SM): fine-grained sand, brown (7.5YR-4/2), moist, medium dense to firm 8 9 100 55 KLF-7-55 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-5/3), moist, medium dense 13 14 95 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-7** DRAWN BY: JC KLEINFELDER CHECKED BY: B-9 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 2 of 3

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1

\\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\

Station\133805 Boring Logs\_rev6\_10112013.gpj

\\riverside\riverside-Data\users\projects\133805 - Ladwp Figueroa Pump

KLEINFELDER/BENTLEY/GINT/ARCHIVED FILES/KLF GINT STANDARD R1 Date Begin - End: 5/20/2013 - 5/20/2013 **Drilling Company:** Martini Drilling **BORING LOG KLF-7** Logged By: TWM **Drill Crew:** Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** CME-75 Hammer Type - Drop: 140 lb. Auto - 30 in. Plunge: -90 degrees **Drilling Method:** Hollow Stem Auger Weather: Clear, hot Bit Type - Auger Dia.: Hollow Stem - 6 in. O.D FIELD EXPLORATION Recovery (NR=No Recovery PID / FID (ppmv) Sample Number Uncorr. blows/6 Surveyed Elevation (feet) Northing: 1,818,637.8 Graphical Log Easting: 6,476,128.9 Depth (feet) Surveyed Surface Elevation (ft.): 152.0 Sample Surface Condition: Asphalt 18 in. KLF-7-60 4 0.0 Poorly-Graded SAND (SP): fine-grained sand, brown (7.5YR-5/3), moist, medium dense -Becomes brown (7.5YR-4/3), decreased moisture 10 -90 \\KLEINFELDER.COM\SHARES\SANDIEGO-DATA\SYS\CADSUPPORT\ KLF-7-65 Poorly-Graded SAND with Silt (SP-SM): fine-grained sand, brown (7.5YR-4/3), moist, medium dense 5 0.0 9 9 -85 70 KLF-7-70 18 in. -Increased moisture (SP-SM) 5 0.0 15 -80 GROUNDWATER LEVEL INFORMATION:
Groundwater was not encountered during drilling or after completion. The exploration was terminated approximately 71.5 feet below ground **GENERAL NOTES** Hand augered to 5 feet below ground surface before switching to hollow Station\133805 Boring Logs\_rev6\_10112013.gpj TD = 71.5'. No apparent groundwater encountered. Boring backfilled with grout/portland mix (approx. 120 gallons). The exploration location and elevation were surveyed by LADWP. 75 75 80 Ladwp Figueroa Pump 85 \\riverside\riverside-Data\users\projects\133805 -65 **PLATE** PROJECT NO.: 133805 **BORING LOG KLF-7** DRAWN BY: JC KLEINFELDER CHECKED BY: B-9 HAV LADWP Figueroa Pump Station (FPS) Bright People. Right Solutions. Los Angeles, CA r FILE: DATE: 5/30/2013 REVISED: 7/19/2013 PAGE: 3 of 3



## **WASTE DISPOSAL MANIFESTS**

|                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        | 7 AMA III      | er hen a                                      |                                        | ·                                     | <u>,                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                     | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ).            |
|-------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|----------------|-----------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                   | Manifest                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>SOIL SA</b>                                 |                                        | azardo         |                                               |                                        | PST                                   | 725 (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>↓</b> Man                          | ifest# ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|                   | Date of Shipment:                                                          | Responsible for l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Payment:                                       | Tran                                   | ısport Ti      | ruck #:                                       | ************************************** | Facility #:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approval Num                          | ber:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Load #        |
|                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | 3                                      | 941            | /<br>'72'                                     | 2                                      | A07                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 001           |
|                   | Generator's Name and Billing                                               | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                        | · ' (          | Genéra                                        | tor's Phone                            | e #:                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   | LOS ANGELES DEPA<br>111 N. HOPE ST.<br>ROOM 1000                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TER & POWE                                     | R                                      |                | Person<br>FAX#:                               | to Contact                             | : .                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Customer Acco                         | unt Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
|                   | LOS ANGELES, CA                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | ************************************** |                | 775 W. C. |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   | Consultant's Name and Billing                                              | g Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                        | •              | Consul                                        | tant's Phor                            | ne #:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   |                                                                            | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                        | ]              | Person                                        | to Contact                             | :                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | . 1                                    |                | T 1 5 / 11                                    |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | 4                                      |                | FAX#:                                         |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Customer Acco                         | unt Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
|                   | Generation Site (Transport fro                                             | m): (name & address)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | ( <sup>1</sup> )                       |                | Site Ph                                       | one #:                                 |                                       | and the second s |                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|                   | LADWPFIGUERO                                                               | DA PUMP STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ION                                            |                                        | -              | Person                                        | to Contact                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| ant -             | 6800 <sub>3</sub> S. FIGUER(                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        | ,              |                                               |                                        | ·<br>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| suft              | LOS ANGELES, (                                                             | DA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                        |                | FAX#:                                         |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Con               | Designated Facility (Transport                                             | to): (name & address)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                       |                                        |                | Facility                                      | Phone #:                               | an inggarangan kalangan kan d         | normal de mobile et dess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                     | nesista de la composition della composition dell |               |
| and/or Consultant | SOIL SAFE                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·          | j                                      |                | (80                                           | <mark>0) 982-(</mark>                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   | 12328 HIBISCUS                                                             | AVENUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THE MAY                                        | -5                                     | -              |                                               | to Contact                             | :<br>Jeffre                           | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Generator         | ADELÂNTO, CA                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        | j.             | FAX#:                                         |                                        | <u> </u>                              | The state of the s |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 8 a,        |
| ner               | Alisania (1905) and the above above an appropriate property and the second | Note the second | '1                                             |                                        | ľ              |                                               | (1) 246-(                              |                                       | <i>/</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Ö                 | Transporter Name and Mailin                                                | g Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( <del>)</del>                                 |                                        | )              | _                                             | orter's Pho<br>3-460-52                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CA                                    | F0000183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 913           |
|                   | BELSHIRE 26971 TOWNE C                                                     | ENTOS PONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                        |                | Person                                        | to Contact                             | : 1                                   | Was a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   | FOOTHILL RANG                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        | -              |                                               | RRY MO                                 | DOTHAR                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Customer Acco                         | 450647<br>unt Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BESI: 22279                                    | 92                                     |                |                                               | <u>-460-5</u> 2                        | 210                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                   | Description of Soil                                                        | Moisture Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contaminated                                   | by:                                    | Approx.        | . Qty:                                        | Descri                                 | iption of De                          | livery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gross Weight                          | Tare Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net Weight    |
|                   | Sand Organic O                                                             | 0-10%<br>10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        | М              |                                               |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/11/                                | 22/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0011          |
|                   | Clay O Other O                                                             | 20% - over □<br>0 - 10% □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                        | No.            | <b>A</b> Yw                                   | 5                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16140                                 | 376X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 029           |
|                   | Sand 🗀 Organic 🗅<br>Clay 🔾 Other 🗅                                         | 10 - 20% □<br>20% - over □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                        |                | ļ                                             |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ō,                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2           |
|                   | List any exception to items list                                           | ed above:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                        |                |                                               | 1                                      | Scale Ticket                          | # .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1195                                  | 72,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|                   | Generator's and/or consul                                                  | tant's certification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I/We certify the                               | at the                                 | soil re        | ferenc                                        | ed herein                              | is taken er                           | itirely fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ie Soil Data  |
|                   | Sheet completed and certij<br>in any way.                                  | fied by me/us for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Generation S                                 | ite sh                                 | iown al        | bove a                                        | nd nothir                              | ng has beer                           | ı added o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r done to such                        | soil that w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ould alter it |
|                   |                                                                            | erator Q Consu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ltant 🗆                                        |                                        | Sign           | ature a                                       | nd date:                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day Year      |
|                   | George Fae                                                                 | ustle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ers osam maga h <u>ay</u> aya era sa aga sa wa | 4                                      | $\mathcal{L}$  | CA                                            | De R.                                  | 2000                                  | w Ulo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 72.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 13         |
| ter               | Transporter's certification                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        |                |                                               |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| spor              | condition as when receive<br>without off-loading, addin                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        |                |                                               |                                        |                                       | ine Genei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rution Site to                        | ine Designa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | неа насину    |
| Transporter       | Print or Type Name:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        |                |                                               | nd date:                               | and the second second                 | A. 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                     | Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day Year      |
|                   | Discrepancies:                                                             | alar of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                        |                | ······································        | 4                                      | · · · · · · · · · · · · · · · · · · · | ممر من والمعاود والما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The section is with                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1015          |
| λų                | 58005F1G                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        |                |                                               |                                        | · Communication                       | ا سيميل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •             |
| Facility          | 90/1052                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                        |                |                                               |                                        | /                                     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •             |
|                   |                                                                            | o the vector of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oil corravad be ±                              | hia -                                  | nanifor!       | t awar                                        | it ac wata                             | d ahono                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Recycling         | Recycling Facility certified Print or Type Name:                           | s the receipt of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ou coverea by t                                | กเร ท                                  |                |                                               | nd date:                               | u uvove: 1/                           | - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Rec               |                                                                            | EY/J. PROVAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAL                                            |                                        |                |                                               |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000<br>1000                          | <b>-</b> フつ/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                       | <del>arana</del> sa                    | Na de la compa | the Assats to Mary Taylor                     |                                        | / <del>/</del>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | フンノ           |
| Pleas             | e print or type.                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                              |                                        |                |                                               |                                        | /                                     | \X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | March 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mass to the s |

TRANSPORTER COPY(

## NON-HAZARDOUS WASTE DATA FORM

| · · ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|
|                    | Generator's Name and Malling Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del> </del>   | Generator's Site Addres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>                                  | <del> </del>                          |
|                    | LOS ANGELES DEPARTMENT OF WATER & POWER 111 N. HOPE ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | LADWP FIGUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
|                    | ROOM 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 5900 S. FIGUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
| ;                  | LOS ANGELES, CA 90012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | LOS ANGELES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
| ,                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
| `                  | Generator's Phone:  Container type removed from site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Cantainer tune tre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | anana da da da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | receiving facility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                       |
|                    | car a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                       |
|                    | Dums 🗆 Vacuum Truck 🗅 Roll-off Truck 🚨 Dum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | np Truck       | □ Drums XX□                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vacuum Truck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Roll-off Truck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🗓 Dun                                        | np Trùck                              |
| · · .              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
|                    | Q Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                       |
| نسد                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bill                                         | 1                                     |
| Ь                  | Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gall                                         | <u>un)</u>                            |
| A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                            |                                       |
| 굕                  | WASTE DESCRIPTION NON-HAZARDOUS WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>!</b>       | GENERATING PROC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESS WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . PURGING / DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CON W                                        | ATER                                  |
| GENERATOR          | COMPONENTS OF WASTE PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 04          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | NT-5043-3                             |
| <u>Ш</u>           | No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m andre        | CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PONENTS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Avoric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PPM                                          | %                                     |
|                    | 1. • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100%           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N 200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |                                              |                                       |
| i iş               | Torris 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * P. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                       |
|                    | 2. TFPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1%            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
|                    | Waste ProfilePROPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a landania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                       |
|                    | PROPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RTIES: pH /~ 1 | U SOLID//ALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rignio 💝 🗖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SLUDGE A SLURRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U OTHER                                      | · · · · · · · · · · · · · · · · · · · |
|                    | HANDLING INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                     | <del>,</del> .                        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
|                    | Generator Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . Month                                      | Day Year                              |
|                    | GROGO FARUSTIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deage          | Foreurl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ço.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .   <del>"</del>                             | 11 13                                 |
| * ***              | The Generator certifies that the waste as described is 100% non-hazardous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>'                                    </u> |                                       |
|                    | Transporter 1 Company Name BELSHIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                       |
| <b>H</b>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 949-460-5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                       |
| F.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature<br>  | The state of the s | with the state of  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Month                                        | Day Year                              |
| OR                 | FRANK SUULUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | January.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                           | 118113                                |
| SP                 | Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The sale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>                                  |                                       |
| TRANSP             | NIETO & SONS TRUCKING, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phone#<br>714-990-8856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                            |                                       |
| 江                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature      | A <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 5 W 15 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · in sen nond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Month                                        | Day Year                              |
|                    | 1 Det r O Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · James        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | imonth                                       | 2 ay 3 toui.                          |
|                    | process to the program of the progra | 1 11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 7775                                       | 23 178                                |
|                    | Transporter Acknowledgment of Receipt of Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marie Care     | the will common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and and formation many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                       |
| <u> </u>           | Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | of Comming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the factorial section of the factorial sec | Phone#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                       |
| λLI                | Designated Facility Name and Site Address DEMENNO KERDOON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | left for any transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone#<br>310-637-7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                       |
| SILITY             | Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | by fle coff american                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone#<br>310-637-7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                       |
| -ACILITY           | Designated Facility Name and Site Address DEMENNO KERDOON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | left aussires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
| G FACILITY         | Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | left augustus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
| ING FACILITY       | Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | by Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
| EIVING FACILITY    | Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | by any transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |
| CEIVING FACILITY   | Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignature       | MW/N/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Month                                        | Day Yes                               |
| 낊                  | Developmented Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222  Printed/Typod Name SOPHAD A SVAJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN            | Marine September 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310-637-7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Month                                        | Day Yes                               |
| RECEIVING FACILITY | Designated Facility Name and Site Address  DEMENNO KERDOON  2000 N. ALAMEDA ST.  COMPTON, CA 90222  Printed/Typed Name  SI  Designated Facility Owner, of, Operator, Certification of receipt of materials covered by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIN            | May parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310-637-7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | Day Yes                               |
| RECEIVING FACILITY | Developmented Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222  Printed/Typod Name SOPHAD A SVAJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN            | May Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310-637-7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | Day Yes                               |



## **ANALYTICAL LABORATORY REPORTS**

## **DEPARTMENT OF WATER & POWER** OF THE CITY OF LOS ANGELES

## Power System Integrated Support Services

## ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT: GEORGE FAEUSTLE

**PROJECT:** Figueroa Pumping Station

REPORT NO.: C12071

## **TABLE OF CONTENTS**

| SECTION           |                                                 | PAGE                                  |
|-------------------|-------------------------------------------------|---------------------------------------|
| COVER LETTER, COC |                                                 | 010001 - 010012                       |
| ATTACHMENT 1      | Volatile Organic Compounds (VOCs)               |                                       |
|                   | EPA METHOD 8260B                                | 020001 - 020085                       |
| ATTACHMENT 2      | Total Extractable Petroleum Hydrocarbons (TEPH) |                                       |
|                   | EPA METHOD 8015M                                | 030001 - 030042                       |
| ATTACHMENT 3      | Total Recoverable Petroleum Hydrocarbons (TRPH) |                                       |
|                   | EPA METHOD 418.1, 1664B                         | 040001 - 040010                       |
| ATTACHMENT 4      | Gasoline Range Organics (GRO)                   | · · · · · · · · · · · · · · · · · · · |
|                   | EPA METHOD 8015B                                | 050001 - 050034                       |
| ATTACHMENT 5      | Polychlorinated Biphenyls (PCBs)                |                                       |
|                   | EPA METHOD 8082                                 | 060001 - 060004                       |
| ATTACHMENT 6      | Metals/Mercury                                  |                                       |
|                   | EPA METHOD 6010B/7471                           | 070001 - 070004                       |

## DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12071 updated Pate 1 of 1 with attachment COC13-1161, 13-1171, 13-1192, COC13-1202, 1231, 1232, 1233, 1234

## ENVIRONMENTAL LABORATORY DATA REPORT

Figueroa Pumping Station Soil and Water Samples

Soil and water samples taken from Figueroa Pumping Station between May 13, 2013 and May 20, 2013 were submitted to the Environmental Laboratory for determination of their Volatile Organic Compounds (VOCs), Total Extractable Petroleum Hydrocarbons (TEPH) including Motor Oil (MO) and Diesel Range Organic (DRO), Total Recoverable Petroleum Hydrocarbons (TRPH), Gasoline Range Organics (GRO), Polychlorinated Biphenyls (PCBs), and metals including mercury contents.

These samples were analyzed by Environmental Laboratory of the Integrated Support Services Business Unit. The analyses and their corresponding methodologies were as follows:

| Analyte                                         | Method of Analysis |
|-------------------------------------------------|--------------------|
| Volatile Organic Compounds (VOCs)               | EPA 8260B          |
| Total Extractable Petroleum Hydrocarbons (TEPH, |                    |
| Motor oil (MO), Diesel Range Organics (DRO)     | EPA 8015M          |
| Total Recoverable Petroleum Hydrocarbons (TRPH) | EPA 418.1, 1664B   |
| Gasoline Range Organics (GRO)                   | EPA 8015B          |
| Polychlorinated Biphenyls (PCBs)                | EPA 8082           |
| Metals/Mercury                                  | EPA 6010B/7471     |

The quality assurance data validates that the accompanying data for these samples are of acceptable quality. If you have any questions or if further information is required, please contact Mr. Kevin Han at (213) 367-7267.

Date Completed: 6/24/2013 Work Order No. AGM82 Job Card No.: J95508 Copies to: G. R. Faeustle

> J. A. Gonzales N. Liu

K. Han T. Nguyen FileNet Test Performed by: Env. Laboratory
Report by: TN Date: 7/25/13
Checked by: Date: 8///13

APPROVED BY: Kevin Han Date
Interim Manager of

Interim Manager of Environmental Laboratory

## Environmental Laboratory

Los Angeles, CA. 90012 (213) 367-7248/7399 1630 N. Main Street, Bldg. 7, 3rd Flr. (213) 367-7285 FAX

CHEMISTRY LOG NUMBERS

Sample Location:

(For sample duplicates use 1 or x)

7LS50 NJ

# Department of Water and Power

| Revision: 08/01/02                                                                                                                | 201<br>REC                          | 3 MA'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113                                                                                                  | PM<br>. CH                                                                                                                                                                                                                                                                                                                                                      | Date & Time—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05250                                                                                                                                                                 | 05590                                                                                                                                                                                                                                                                                                                                                              | 05589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 655%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05547  | 78550         | 525.50                                                                                  | 12550         | 05583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05537   | 05581  | 08220  | 055.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05572 | 05577                                   | 7LS50 W | ``.Ø``                             | ample Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3) 367-7285 FAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3) 367-7248/7399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s Angeles CA 90012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|-----------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specify                                                                                                                           | 2 Wks                               | 1Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Priority                                                                                             | Address                                                                                                                                                                                                                                                                                                                                                         | Requester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                         |         |                                    | LADM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , Jul.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <del>-</del> | · で<br>・ 行                          | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | لصيا                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    | ┼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ├─-    | 1015          | 016                                                                                     | 1 5550        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                         | _       | Sample<br>Time                     | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ဂ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Received                                                                                                                          | Relinquis                           | Sampled t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | (                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KLF-1-                                                                                                                                                                | KF-1-                                                                                                                                                                                                                                                                                                                                                              | ドレドーー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KLE-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KLF-1- | CLE-1-        | くした・ノー・                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KLF-1-3 | KLF-1- | LLF-1- | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1)    | DCER                                    |         | Miles (**                          | Figuer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nain o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -\                                                                                                                                | hed by:                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                        | Fesu+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #5                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                                                                                                                 | 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS     | 50            | 6                                                                                       | Ó             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O       | 25     | 20     | (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0     |                                         |         | le Location                        | 11' 、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f Cust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | City of Los Angeles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                   |                                     | Meie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Printed Na                                                                                           | <u>e</u> .                                                                                                                                                                                                                                                                                                                                                      | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                         |         | and Descri                         | f 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | odv R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Augeles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                   | Ĵ                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ame                                                                                                  | 4708                                                                                                                                                                                                                                                                                                                                                            | anization/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                         |         | plion                              | ion (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                   | ۸                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | Fax                                                                                                                                                                                                                                                                                                                                                             | īv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    | <sub>En</sub> t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •      |               |                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                         |         | Preservatives                      | N -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Received                                                                                                                          | Relinguism                          | Sampled by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (   | 7                                       | F       | 端Container<br>語に「後娘。<br>No Tybe St | nilial of Field F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Report C#_<br>Refrig#. <u>£2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COC#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ¥<br>¥                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1   | 1000                                    |         |                                    | Sonr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OC#: 13-116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| + (                                                                                                                               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gnature                                                                                              | Approved                                                                                                                                                                                                                                                                                                                                                        | Analyst:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               | 1                                                                                       | / Index exert | ア・ア・ブ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 740     |        | TPH ~  | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     |                                         | 3       | Ana<br>Rec                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,15r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               | ,                                                                                       | not-oc        | C.25/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIO 1   |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | TO THE PARTY                            | O. A.   | alysis<br>luired                   | No. of Field Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ' i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                   | X.M.l                               | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tin                                                                                                  | Date                                                                                                                                                                                                                                                                                                                                                            | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |                                                                                         |               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        | 7      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +     |                                         | +       | Test<br>Result                     | .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WO# AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | otaye_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                   | -                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                         |         | Analyst(s)<br>Assigned             | ,=K951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                   | Specify (1) Received by Received by | Specify (1) Received by Receiv | 2-4 Hrs C Sampled by:    Chem Lub COC Form #1   Specify   Specify   Sampled by:   Sampled by:   1345 | Priority  2-4 Hrs  1Day 10ay 1Va Vis Mejiev  Sampled by: Specify  AWks Specify Specify  Received by | Approved:    Priority     Printed Name   Printed Name   Sampled by:   Sampled by:   Sampled by:   Sampled by:   Sampled by:   Ya Vis Meight   Sampled by:   Received by   Received by | Requester Galves Tel. 1708 Fax Analyst: Date Analyst: Date Address  Address Tel. 74708 Fax Approved: Date Date Date Approved: Date Date Date Date Date Date Date Date | Date & Time Stamp Zar Requester Grange Fourty Address  Priority Address  Printed Name Sampled by: Approved: Date Date Date Approved: Date Date Approved: Date Date Date Date Date Date Date Date | Date & Time    Requester Graphs   Fosily   Chamber Stampled by:   Printed Name   Sampled by:   Printed Name   Pr | Completed Conception   Specify   S | 1030   | 1025     1030 | 1025   KLE-1-50   1025   KLE-1-55   1030   KLE-1-60   1   1   1   1   1   1   1   1   1 | 1016          | 1016   KLE-1-45   1016   KLE-1-45   1016   KLE-1-45   1016   KLE-1-50   1015   KLE-1-50   1015   KLE-1-50   1025   KLE-1-55   1030   KLE-1-55   1030   KLE-1-265   1030   KLE-1-265   1030   KLE-1-265   1030   KLE-1-265   1030   KLE-1-265   1030   KLE-1-27   1025   KLE-1-27   1025 | 1950    | 1940   | 1930   | 1025   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016 | 1915  | ST73   0905   KLE-1-15   TTRH CUD 9015B | St.     | 13/13   08/15   0CTB               | Signature   Sign | Cation: LADNIT   Figure   Camp   Strict   Camp   Strict   Camp   Strict   Camp   Cam | Callon: LADANT   Figure vos. Rump Schient (FPS)   Refine Stand Pressure   Callon: LADANT   Figure vos. Rump Schient (FPS)   India of Field Pressure   Callon: Refine Stand   Callon: Required   Callon: Requ | Chain of Custody Record  Refright 5252 Staft 2255 Ball (2555 Ball |

## 1255021 Chem Lab use only Chem Lab use only Chem 12 (213) 367-7285 FAX Los Angeles, CA. 90012 (213) 367-7248/7399 1630 N. Main Street, Bldg. 7, 3rd Flr. >> COC# Label Here << Environmental Laboratory Sample Location: 2525051 **LADWP** 45550 \$ 5550 2013 MAY 13 Paris RECD BY: ENV. CHEM Them Lab COC Form #1 Revision: 08/01/02 Sample Date 5/13/13 Requester LADIMP Priority Address Specify 2-4 Hrs 2 Wks † Day 4Wks (24 Hr) Sample Time 5111 1130 1120 1300 Figueroa Pump Station (FPS **Chain of Custody Record** Sample Location and Description KLE-1-90 KUF-1-80 Department of Water and Power KLF-1-85 23.20 Sampled by: Relinquished have Received by Lyavis Meier City of Los Angeles ravis Mejer NALY **Printed Name** Organization/Div. ンゴイトラン Fax Refrig# 625 2 Shelf .⊮Container :: initial of Field Personnel: COC#:13-116) No. Type Size Matrix Received by ١ Sample Ş. Signature VOC ONLY VOC=(1-115cm) 5035/82802 TRPH 680 Analyst: Approved: TRH CCID BOISB ξ Analysis Required No. of Field Test: 25108 Page 2 of 2 7400 · Result 1345 Test Date Date Time

Analyst(s) Assigned

一子

\$13/13 7/3/12

Date

Los Ange [213] 367 [213] 367 Environmental Laboratory 1630 N. Main Street, Bldg. 7, 3rd F

# Department of Water and Power

| •                |                                          | 1                    | -           | -EI          |                      |              |              | 6        | 5                     | Ā      | ü      | 12       | 1=       | 1-       | <del> </del> | +        |          | -       | -        |          |          | -         | LA                       | HEV (For s                                              | ွှ                        | (213                                  | 213                    | _ {                                    |
|------------------|------------------------------------------|----------------------|-------------|--------------|----------------------|--------------|--------------|----------|-----------------------|--------|--------|----------|----------|----------|--------------|----------|----------|---------|----------|----------|----------|-----------|--------------------------|---------------------------------------------------------|---------------------------|---------------------------------------|------------------------|----------------------------------------|
| •                | Revision: 08/01/02                       | Chan Lab COC Frances |             | 013 I        | LA<br>MAY<br>BY: 6   | AD Sallo NV. | SDate & Time | 12<br>EM | 105660 AB             | 1      | 85950  | 05657    | 05656    | 05655    | 09654        | 05653    | 05652    | 15950   | 05650    | 05649    | 84950    | 7         |                          | HEMISTRY LOG NUMBERS (For sample duplicates use 1 or X) | Sample Location:          | (213) 367-7285 FAX                    | [213] 367-7248/7399    | Cool N. Ixam Street, Bidg. 7, 3rd Fir. |
|                  | Specify                                  | 4Wks                 | 1Day        | Priority     | Address              | <b>7</b>     | - 1          |          | <                     |        |        |          |          |          |              |          |          |         |          |          |          |           | 1/4/s                    | Sample Date                                             | LADWY                     |                                       |                        | 7, 3rd Flr.                            |
| ا<br>ا<br>ا      | # <del>[</del> <del>[</del> <del>]</del> | 123<br>17            | 13E         | 7            | 275                  | 1000         |              | •        | 1215                  | 1125   | 1040   | 1035     | 1030     | 1015     | 1010         | 1955     | 950      | OHIO    | <u> </u> | N425     | C970     | 33        | 3                        | (24 Hr)<br>Sample<br>Time                               | ]                         | ,                                     | _                      |                                        |
|                  | Received by Albert Ogunnum               | Relinquished by:     |             | Printed Name | 161. 1410B           | Taeustie     |              |          |                       | KCF-Z- | K-2-60 | KLF-2-55 | KLF-2-50 | KCF-2-45 | KLF-2-40     | KLF-2-35 | KLE-2-30 | 44-2-25 | KLF-2-20 | KLF-2-15 | KLF-2-10 | OCT B     | QCEB                     | Sample Location and Description                         | Figueroa Pump Station (FF | Chain of odelody Necold               | hain of Custody Dogord | City of Los Angeles                    |
|                  | Received by                              | Relinquished by      | Sampled by: | dignature    | Fax 1558 C Approved. |              | -            |          | Varies 12 (7) Water V | 444    |        |          |          |          |              |          |          |         |          | 7.00     |          | OA LAWY W | No. Type Size "TYPH-CCIS | Preservatives                                           | _                         | Refrig#. 1952 Shelf 1953 Bin#. 1725 + | •                      | COC#: /2_//7/                          |
| 5<br>5<br>5<br>1 | 1252                                     | 1236                 | 1200        | Time         | Date:                | _ Date       |              |          |                       |        |        |          |          |          |              |          |          |         |          |          |          |           |                          | Test /                                                  | }                         | Hens                                  | e Lor                  | •                                      |
| 14               | 5-14-1                                   | 1/2/2                | //h//s      | Date         |                      |              |              |          |                       |        |        | -        |          |          |              |          |          |         |          |          |          |           | 9                        | Analyst(s)                                              |                           | 83                                    | •                      |                                        |

## Environmental Laboratory

| KTO NI AA-LI DI LATIN GENERALES CONTRACTOR C | ,                           | Department of Water and Power   |                     |                                               |             |                      |             | •          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|---------------------|-----------------------------------------------|-------------|----------------------|-------------|------------|
| os Angeles, CA. 90012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3rd Flr.                    | City of Los Angeles             | co                  | coc#: 13-1192                                 | 5-11g       |                      | Page of     |            |
| (213) 367-7285 FAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | Chain of Custody Record         | Repo                | Report C# JC#                                 |             | 1 - 0                | mAGM87      | 2          |
| Sample Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LADWP                       | Figueroa Pump Station (FPS)     | Refr                | Refrig#. K) 55 SI Initial of Field Personnel: | Shelf onnel | R8511 Bin# R952 R854 | K834        |            |
| Chem Lab use only (177) Chem L | imple Date   Sample<br>Time | Sample Location and Description | Preservatives Title | ontainer                                      | Sample      | Analysis<br>Required | Test A      | Analyst(s) |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/15/13 0745                | QCTB                            |                     | (5 -                                          | <u> </u>    | 161                  | <u> </u> -  | 0          |
| 05739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [                           | QCEB                            | 12                  | 6 -                                           |             | TRH-CCID, GRO, TRPH  |             |            |
| 05740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0820                        |                                 | 드                   | N/2 2/4                                       | 7           | / YOUS (KULLSCAM)    |             |            |
| 05741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0825                        |                                 |                     |                                               | <u> </u>    |                      |             |            |
| 26/501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0835                        | 5 KLE-3-20                      | =                   |                                               |             |                      | -           |            |
| 103743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0846                        | KLF-3-25                        |                     |                                               | 1           |                      | tomol2/a    | ۲,         |
| 05744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2580                        | 5 KLF-3-30                      |                     |                                               |             |                      | 80 C 16-12  |            |
| 0.5745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M05                         | _                               |                     |                                               |             |                      | 110 2 16 17 |            |
| 94.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0910                        |                                 |                     |                                               | _           |                      |             |            |
| 0 05747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0970                        |                                 |                     |                                               |             |                      |             |            |
| 1 05748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0430                        | 0 KLF-3-50                      |                     |                                               |             |                      |             |            |
| 2 05744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ОНЮ                         | 0 KLE-3-55                      |                     |                                               |             |                      |             |            |
| 13 05/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SHE                         | 5 KLF-3-60                      |                     |                                               |             |                      |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                         | 0 KLF-3-65                      | •                   | `<br>~                                        | <           |                      |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 30                       | & QCFR                          | 7)                  | 16-                                           |             | <                    |             |            |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                 |                     |                                               |             |                      |             |            |
| W C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                 |                     | -                                             |             |                      |             |            |

| •               |                                         | 761             | ¦∤ ⁻ፘ!       | ,JUJ                                  |
|-----------------|-----------------------------------------|-----------------|--------------|---------------------------------------|
| •               | Chen Lub COC Form #1 Revision: 08/01/02 |                 | 2013<br>RECD | LA College & Time & Time MAY BY: ENV. |
|                 | Specify LX                              |                 | Priority 5 Y | Requester (Teorge<br>Address JFB 1    |
| Albert Ogunnub) | Received by Law 15 15 16 16 16          | Thy: Meiev      | ne           | 1044 Tel. 74708 Fax                   |
|                 | Required by                             | Relinquished by | Signature    | 73582 Approved:                       |
| 1434 2-18-13    | 2/km C 141                              |                 | Time Date    | Date                                  |

## Environmental Laboratory

(213) 367-7248/7399 (213) 367-7285 FAX Los Angeles, CA. 90012 1630 N. Main Street, Bldg. 7, 3rd Flr.

## Department of Water and Power City of Los Angeles

CHEMISTRY LOG NUMBERS Chem Lab use only (25) (For sample duplicates use 1 or x) Sample Location: LADWP Date 2: 45
Y 16mp CHEN LAB 20850 40850 05803 10850 00820 55750 10050 05806 50850 3972 C 05796 75797 60850 80850 316/13 Sample Date Sample **一次数据结婚** Requester Address LADNA 0830 SIBO 0910 0000 5580 0840 2530 0930 0935 0920 0350 Carlo 1000 1005 George ) F13 1 044 Chain of Custody Record Sample Location and Description Figueron Pump Station KLE-5-5 KLE-5-15 KLE-5-20 KLE-5-10 KLE-5-30 KLE-5-25 KUF-5-55 KLE-5-50 スパーのしよい KCE-5-40 KLE-5-35 KLE-5-65 KLF-5-60 KLF-5-70 Faeustla Ţel. Organization/Div. 74708 (FPS Fax Refrig#. Rus q પ્યુ⊱Container initial of Field Personnel: COC#: /3-1202 前に 情感に No. Type Size 78587 1/4 1/4 Soil Sample Matrix \_ Shelf **R9**5牛 TM-CLID, GRO, TRPH Approved: Analyst: 1C# 595568 WO# #GM &Z Analysis Required No. of Field Test: Page Lof 3 Result Date Test Date Analyst(s) Assigned

| r               | Revision: 08/01/02 | Chem Lab COC Form #1 | 20          | _<br>13 N      | L   |
|-----------------|--------------------|----------------------|-------------|----------------|-----|
|                 |                    | T                    |             | <sup>د</sup> ر | BY  |
| č               | マファイ               | Specify (4)          | 1Day 2 1    | 2-4 Hrs        | 70  |
| 4/13            | 2                  | Received             | Relinquis   | Sampled by     |     |
| Albert Ogunnuh. | THE D              | Trapis               | -II         |                |     |
| sprach.         | Selfenaco          | Mejev                | ravis Meier | Printed Name   |     |
|                 | 60                 |                      |             | e              |     |
| ^               | Rece               | l lead               | Sam         |                |     |
| cec             | received by        | Jan 1                | pled by:    |                |     |
|                 |                    |                      | Mr.         | /Signature     | • 1 |
| ,<br>)          |                    |                      |             |                |     |
| 244/            | 1410               | 0041                 | IHOO        | Time           |     |
| E1-2 Shh,       | 410 5-16-13        | 1400 Shulis          | 3/16/13     | Date           |     |

## - T.ADWP >> 000# Label Here << HEMISTRY LOG NUMBERS (213) 367-7285 FAX (213) 367-7248/7399 Los Angeles, CA. 90012 1630 N. Main Street, Bldg. 7, 3rd Flr. Environmental Laboratory Chem Lab use only Sample Location: 02850 850 2850 850 2013 MAY 1 6 SEP 2: 45 RECD BY: ENV. CHIN LAB 1850 1850 41850 05813 05812 1850 Chen Lub COC Form to 05823 2: 45 15/16/13 Requester Priority 2-4 Hrs Address 2 Wks Specify 4Wks 1Day LADWP (24 Hr) Sample Time 5 1205 1269 230 70 1300 1255 220 1280 1240 1235 5 1320 28 Chain of Custody Record Department of Water and Power KLE-4-45 KLF-4-35 KLF-4-30 ドレドーターで KLE-4-50 KLE-4-40 KLF-4-25 KLE-4-10 KLF-4-20 KLF-4-70 KLF-4-15 MF-4-60 KLF-4-55 Sampled by: Travis Meier Relinquished by: Sample Location and Description Figueron Pump Station (FFS) City of Los Angeles Ogunnus. Travis Meier Tel. **Printed Name** X/Con A CO Organization/Div. Fax No. Type Initial of Field Personnel: Refrig#. Report C# COC#: 13-1202 $\leftarrow$ Sampled by 1/A A/A 4 8 Matrix Sample Signature TRH-CCID, GROJRPH Analyst: Approved: Ğ# Analysis Required No. of Field Test: ₩0# Page 2 of 3 1410 8441 1400 9071 Result Date Test Date Time Analyst(s) Assigned 5/4/3 18W13 5-16-13 くろくろ Date

## HEMISTRY LOG NUMBERS: Sample Date Sample (24 Hr) (For sample duplicates use 1 or 2) (213) 367-7285 FAX (213) 367-7248/7399 Los Angeles, CA. 90012 Environmental Laboratory 1630 N. Main Street, Bldg. 7, 3rd Flr. Chem Leb use only >> COC# Label Here << N 05824 W05825 Sample Location: 92850M LADWP 2013 MAY 1 6 PROPERTY AB Chen Lab COC Form #1 45 Requester Priority 2-4 Hrs Address 1Day 2 Wks Specify 4Wks LADWP 0800 1345 1400 Chain of Custody Record Sample Location and Description Department of Water and Power QCEB 87 TV Made of CFR Relinquished by: Sampled by: Figueroa Rump Station Jemp 18,2 & City of Los Angeles 09000000 Yavis Mejer XAVIS Mejer Tel. **Printed Name** MOW A CO Organization/Div. Refrig#.\_ Report C# Siz Container Initial of Field Personnel: COC#: 13-1202 Sampled by: 6 Size Sample Matrix Meter Marky Signature TPH-CID, CHOTEPH temp 3.760 VOCs only (full son Analyst: Approved: JC# B 5-17-13 Required Analysis No. of Field Test: Page 3 of 3 5/6/13 5/6/13 6-16-13 Test Result 8441 Date Date Time Analyst(s) Assigned 0,7 100 5-16-13 Date

COC13- 1231 Chem Lab use only TANK Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX 1630 N. Main Street, Bldg. 7, 3rd Flr. Environmental Laboratory 1N05901 Sample Location: 4 0650N7 1205007 LADWI 2013 MAY 25 & TIME A Chem Lub COC Form #1 Revision: 08/01/02 1: 32 LAB Sample Date SHED 51/02/5 9/20/13 1230 OCFB 5/20/13 10000 Requester Priority 2-4 Hrs Address 2 Wks Specify 1Day 4Wks LADWA (24 Hr) Sample Time 35 邻 **Chain of Custody Record** Sample Location and Description Department of Water and Power OCT B QCEB Figueroa Permo Station Relinquished by: ravis Mejer Sampled by: City of Los Angeles Travis Meier NEWEN Tel. **Printed Name** Organization/Div. Fax » Container Refrig# (352,53Shelf Voc 698 Pain#. Report C# coc#: |3-123 initial of Fleld Personnel: Sampled by: Relinquished 背崎 Type Size Sample Matrix TPH-CCID, GRO, TRPH ggnature YOCs only Analyst: Approved: Analysis Required No. of Field Test: ₩O# Page \_\_of\_ Result 1832 5/20/13 Test 1300 1300 1360 Date Date Time Tex 145°C Analyst(s) Assigned 5/20/13 5/20/13 5.2018 Date

# Los , (213) Environmental Laboratory

| Date & Timp Stamp Photosom 12073 MAY 20 Photosom 2073 MAY 20 Photosom 12 Photo | 2 | 150 M           | 13 05916    | 11 05914     | 10 05913     | 8 05917       | 01650        | 0.54(2) | 05907         |                                | CHEMISTRY LOG NUMBERS (For sample duplicates use if or x)  L人 0590 + | Sample Location:                                | Livin On Heilial Laboratory 1630 N. Main Street, Bldg. 7, 3rd Flr. Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|-------------|--------------|--------------|---------------|--------------|---------|---------------|--------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requester Address Priority 2-4 Hrs 1Day 2 Wks 4Wks Specify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | <del>&lt;</del> |             |              |              |               |              | 0       | 000           |                                | Sample Date Sam                                                      | LADWP                                           | atory<br>7, 3rd Fir.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| # MS/MSD samples included Organization/Div.  Tel.  Tel.  Printed Name  Sampled by:  Received by:  Re |   | 155 KLF-7-70*   | 50 KLE-7-65 | 150 KLE-7-55 | 130 KLE-7-50 | 1120 KIE-7-40 | 115 KLF-7-35 | として     | 1050 KLF-7-20 | 1-F-7-1                        | Sample Location and Description Preserval 1035 KLFーナーら               | Figueroa Pump Statics                           | Department of Water and Power City of Los Angeles Chain of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fax Analyst: Date Approved: Date Sampled by Signature 1300 Recained by Recained by 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 5 4 4           |             |              | 2 2          | = ==          | EE           | -E      | 4             | H. Character John John History | ontainer Sample Analysis    Analysis   Analysis                      | Initial of Field Personnel:  No. of Field Test: | COC#: 13-123 2 Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date Date Time Date 1500 5/20/13 1300 5/20/13 1332 5/20/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                 |             |              |              |               | -            |         |               |                                | st Analyst(s) sult Assigned                                          |                                                 | 10 los / 10 |

(213) 367-7285 FAX Los Angeles, CA. 90012 (213) 367-7248/7399 1630 N. Main Street, Bldg. 7, 3rd Flr. Environmental Laboratory

CHEMISTRY LOG NUMBERS

Sample Location:

ADWP

(24 Hr) Sample Time

(For sample duplicates use .1 or X)

21650 pv7

15/20/13 Sample Date

36.00

67616

05920

833

0820

0830

0835

<u>cs922</u> 05921

05923

42,850 05925

885 7.5

33,65

SEC SEC

Department of Water and Power City of Los Angeles

# Ch

COC#: 12-1223

|   | 1E-6-70      | LE-6-65 | LF-6-60     | LF-6-55 | LF-6-50     | TE-6-45 | 1F-6-40  | LE-6-35 | LF-6-30 | 1F-6-25* | 14-6-1 | F-6-15 | re-6-10 | 15/0-2              | tion and Description   |         | Figure Promo State Cross    |                       | ain of Custody Record | The state of the s |
|---|--------------|---------|-------------|---------|-------------|---------|----------|---------|---------|----------|--------|--------|---------|---------------------|------------------------|---------|-----------------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |              |         |             |         |             | _       | _        |         |         | - 2      |        |        |         |                     | illyes                 | ١١)     |                             | <b>7</b> 7            | ٠                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | <br>4        | 4       | -=-         | エ       | -E          | =       | <u>-</u> | ے۔      | . عہ    | 7        | -      | 4      | 2       | <u>-</u> -          | No. Type Size          | Contain | initial of Fleid Personnel: | Refrig#. K) \$2 Shelf |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | <br>4        |         |             |         |             |         |          |         | _       |          | _      |        |         | MA MA So            | 1 4 1 -                |         | eld Per                     | £152                  | ;<br>,<br>,-,         | <b>∓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | <br>+        |         |             |         |             |         |          | _       | _       |          |        |        |         |                     | Matrix                 |         | sonnel:                     | χ .                   | ,                     | ָר<br>רַ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | <            |         |             |         |             |         |          |         |         |          |        |        | ŗ       | TRH-CLID, GRO, TRPH | Analysis<br>Required   |         | No. of Field Test           | IC# J9                |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |              |         |             |         |             |         |          |         |         |          |        |        |         |                     | Test<br>Result         |         |                             | NO# AGU               | Pageof_               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |              |         |             |         |             |         |          |         |         |          |        |        |         |                     | Analyst(s)<br>Assigned |         |                             | 182                   | }                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ! | <br>بعلىسىن. |         | <del></del> |         | <del></del> |         |          |         |         | . — —    |        |        |         |                     |                        |         |                             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

5

122550 05926

Ξ 12 3

05923

02820 2820

0925

व्यक्ति विकास

<u>=</u>

5631

555 0330

0263C

5

| •           |                | Çυ                   | しつう              | - 14                | ,         |                   |          | 16 | 5 |
|-------------|----------------|----------------------|------------------|---------------------|-----------|-------------------|----------|----|---|
|             | [              |                      |                  | L                   | AU        | <del>//</del>     |          |    |   |
| •           | renson, oponoz | em Lub Co            | 291              | 3 MAY               | 20        | Stam              | 2000     | 3: | 2 |
|             | 20100          | Chem Lub COC Form #1 | RE               | CD BY               | : ENV     | _                 | ĖM       | LA | 8 |
|             |                |                      | <u> </u>         |                     |           |                   |          |    |   |
|             |                | 4Wks<br>Specify      | 1Day<br>2 Wks    | Priority<br>2-4 Hrs | Address   | Requester         |          |    |   |
|             |                |                      |                  | <u> </u>            | ]         | हि<br>            | ŀ        | _  |   |
| 4           | 产主             | 5.1                  | E CO             | 1                   |           |                   |          | _  | _ |
| •           |                | Rec                  | Rel              | Sam                 |           |                   |          |    |   |
| _1          | 12             | Receivedo            | Relinquished by: | Sampled by:         |           | }                 | ħ        |    |   |
|             | 20             |                      | 를  <b>,</b>      |                     |           | Organization/Div. |          |    |   |
| と出たられ       | 1              | 100                  | ravis Meler      | ٥                   | Tel.      | 7017              | 3        |    |   |
| 31.         | No.            | vavis Mejer          | 3                | Printed Name        |           | . ر<br>ک          |          |    |   |
| <i>(11)</i> | 9              | 15                   | er               | Name                |           | Organization/Div  |          |    |   |
| 2,1         | GN ACA         | 3                    |                  |                     |           | zation            | 2        |    |   |
|             | 9,             |                      |                  |                     |           | Div.              |          | _  |   |
| ,           |                |                      |                  |                     | Fax       | 280               |          |    |   |
|             | Vec            | Neum                 | ; / J            |                     |           |                   |          | _  |   |
|             | vecensia ob    | iguisiie             | sampled yy:      | $\bigcup \bigcup$   |           |                   |          | -  |   |
|             |                | ished by:            |                  | $\ $                |           | ]                 | -        | -  |   |
| 4           |                |                      | Pe               | Sign                | <b></b> ≥ | Α                 | $\vdash$ | +  |   |
| >1          |                |                      | * '              | Signature           | Approved: | Analyst:          |          |    |   |
|             |                |                      |                  |                     | l e-      |                   |          |    |   |
|             |                |                      |                  |                     |           |                   |          |    |   |
|             |                | ,                    |                  |                     |           |                   | _        | +  | _ |
| 133         | 1300           | 1300                 | 1300             | Time                | Date      | Date              |          |    |   |
| 1332 5/20/1 | 0              |                      |                  | ē                   |           |                   |          |    |   |
| 5/20/       | 5/20           | 920/13               | Shof13           | Date                |           |                   |          |    |   |
| 12          | (X             | $ \omega $           | W                | ,                   | 1         |                   | L        | 1_ |   |

### HEMISTRY LOG NUMBERS (213) 367-7285 FAX (213) 367-7248/7399 Los Angeles, CA. 90012 1630 N. Main Street, Bldg. 7, 3rd Flr. Environmer tal Laboratory (For sample duplicates use 1 or X) Sample Location: N05932 LADWP 2013 MAY 2億 計 1: 32 RECD BY: ENV. CHEM LAB Chan Lub COC Form #1 1: 32 5/20/13 Requester Priority 2-4 Hrs Address Specify 2 Wks 1Day 1245 (24 Hr) Sample Time 17 37 H Chain of Custody Record Department of Water and Power Sample Location and Description Soil Drum Profile Sampled by: Travis Mejer Relinquished by: Received City of Los Angeles とうとかりかり ravis Tel. **Printed Name** Organization/Div. BNACO No. Type Size Matrix Sample Sample Refrig#. \$157\_ Shelf Initial of Field Personnel: coc#: |3-1234 Rece Sampled by: 17PH - PCBs VIENE GOIDS HAMMEN Title22 metals including -VOX'S WITHE CHARZO Sighature Rand Approved: Analyst: 1C# 142508 WOH 4CM 8 5 Analysis Required EPA8015 No. of Field Test: 8082 Page \_\_\_of\_ 1300 Date Result 1300 Test 132 5/20/13 Date 1300 Time Analyst(s) Assigned 18/0/13 1/20/13 Date

平,4,8千

# **ATTACHMENT #1**

Volatile Organic Compounds (VOCs) EPA Method 8260B Soil & Water

## CITY OF LOS ANGELES, DEPARTMENT OF WATER & POWER ENVIRONMENTAL LABORATORY

### CASE NARRATIVE

### PROJECT: FIGUEROA PUMPING STATION

### METHOD 8260B VOLATILE ORGANICS BY GC/MS

### 1. Holding Time

Soil and water samples were analyzed within holding time.

### 2. Tuning and Calibration

Tuning and calibration met QC requirements.

### 3. Method Blank

There was no contamination detected at reporting level.

### 4. Lab Control Sample

Recoveries met QC criteria.

### 5 Surrogate Recovery

Recoveries met QC criteria.

### 6. Matrix Spike/Matrix Spike Duplicate

Samples LN05580, LN05649, LN05740, LN05797, LN05810, LN05818, LN05906, LN05922, LN05646, and LN05754 were analyzed for MS/MSD. Recoveries met QC criteria.

### 7. Calibration

Initial calibration was performed at five different concentrations. The percent relative standard deviation (% RSD) was within 15%. Recoveries for the continuing calibration check standards met QC requirements.

### 7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. Volatile organic compounds were detected on samples LN05578 and LN05579.

Sample Description

KLF-1-10

### **ENVIRONMENTAL LABORATORY DATA REPORT**

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

Date

Analyzed

5/13/2013 5/17/2013

Date

Received

Date Sampled

5/13/2013

21

38

27

26

29

26

30

44

105.0

190.0

135.0

130.0

145.0

130.0

150.0

220.0

nd

nd

nd

nd

nd

nd

1003

nd

nd

nd

nd

nd

nđ

nd

2146

nd

nd

nd

nd

nd

nđ

nd

PROJECT: FIGUEROA PUMPING STATION

Chemistry Log No.

LN05578

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Ethylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Diisopropyl ether (DIPE)

Hexachlorobutadiene

Page 1 of 2 Sample Matrix: Soil

| L1403370                      | 1 3/13/2013 | 3/13/2013 | 3/11/2013 |         | INCI TITIO |            |         |         |        |
|-------------------------------|-------------|-----------|-----------|---------|------------|------------|---------|---------|--------|
| LN05579                       | 5/13/2013   | 5/13/2013 | 5/17/2013 |         | KLF-1-15   |            |         |         |        |
| LN05580                       | 5/13/2013   | 5/13/2013 | 5/17/2013 |         | KLF-1-20   |            |         | -       |        |
| LN05581                       | 5/13/2013   | 5/13/2013 | 5/17/2013 |         | KLF-1-25   |            |         |         |        |
| LN05582                       | 5/13/2013   | 5/13/2013 | 5/17/2013 |         | KLF-1-30   |            |         |         |        |
| LN05583                       | 5/13/2013   | 5/13/2013 |           |         | KLF-1-35   |            |         |         |        |
| LN05584                       | 5/13/2013   | 5/13/2013 | 5/17/2013 |         | KLF-1-40   |            |         |         |        |
|                               |             |           |           |         |            |            |         |         |        |
|                               |             |           | LN05578   | LN05579 | LN05580    | LN05581    | LN05582 | LN05583 | LN0558 |
| Compounds                     | MDL         | PQL       | Amount    | Amount  | Amount     | Amount     | Amount  | Amount  | Amour  |
|                               | ug/kg       | ug/kg     | ug/kg     | ug/kg   | ug/kg      | ug/kg      | ug/kg   | ug/kg   | ug/kg  |
| Acetone                       | 32          | 160.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| tert-Amyl methyl ether (TAME) | 23          | 115.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Benzene                       | 26          | 130.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Bromobenzene                  | 26          | 130.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Bromochloromethane            | 24          | 120.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| 3romodichloromethane          | 22          | 110.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Bromoform                     | 23          | 115.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Bromomethane                  | 20          | 100.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| /lethyl ethyl ketone (MEK)    | 26          | 130.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ert-Butyl alcohol (TBA)       | 373         | 1865.0    | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| utylbenzene                   | 29          | 145.0     | 1200      | 2372    | nd         | nd         | nd      | nd      | nd     |
| ec-Butylbenzene               | 27          | 135.0     | nd        | 1425    | nd         | nd         | nd      | nd      | nd     |
| ert-Butylbenzene              | 29          | 145.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ert-Butyl ethyl ether (ETBE)  | 20          | 100.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Carbon disulfide              | 116         | 580.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Carbon Tetrachloride          | 32          | 160.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Chlorobenzene                 | 28          | 140.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Chloroethane                  | 42          | 210.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| -Chloroethyl vinyl ether      | 23          | 115.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Chloroform                    | 30          | 150.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Chloromethane                 | 70          | 350.0     | nd        | nd      | nd         | n <b>d</b> | nd      | nd      | nd     |
| -Chiorotoluene                | 27          | 135.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| -Chlorotoluene                | 28          | 140.0     | 38J       | nd      | nd         | nd         | nd      | nd      | nd     |
| Dibromochloromethane          | 25          | 125.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,2-Dibromo-3-chloropropane    | 31          | 155.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,2-Dibromoethane              | 23          | 115.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| Dibromomethane                | 33          | 165.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,2-Dichlorobenzene            | 27          | 135.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,3-Dichlorobenzene            | 27          | 135.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,4-Dichlorobenzene            | 33          | 165.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ichlorodifluoromethane        | 37          | 185.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,1-Dichloroethane             | 29          | 145.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,2-Dichloroethane             | 22          | 110.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| ,1-Dichloroethene             | 28          | 140.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| is-1,2-Dichloroethene         | 26          | 130.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| rans-1,2-Dichloroethene       | 32          | 160.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
| i,2-Dichloropropane           | 22          | 110.0     | nd        | nd      | nd         | nd         | nd      | nd      | nd     |
|                               |             |           |           |         |            |            |         |         |        |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

Page 2 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |  |
|-------------------|--------------|-----------|-----------|--------------------|--|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |  |
| LN05578           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-10           |  |
| LN05579           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-15           |  |
| LN05580           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-20           |  |
| LN05581           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-25           |  |
| LN05582           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-30           |  |
| LN05583           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-35           |  |
| LN05584           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-40           |  |

|                               |       |       | LN05578 | LN05579 | LN05580 | LN05581 | LN05582 | LN05583 | LN05584 |
|-------------------------------|-------|-------|---------|---------|---------|---------|---------|---------|---------|
| Compounds                     | MDL   | PQL   | Amount  |
|                               | ug/kg | ug/kg | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   |
| 2-Hexanone                    | 21    | 105.0 | nd      | nd      | nd      | nd      | nd      | nď      | nd      |
| Isopropylbenzene              | 33    | 165.0 | 786     | 1431    | nd      | nd      | nd      | nd      | nd      |
| p-Isopropyltoluene            | 28    | 140.0 | 447     | 1313    | nd      | nd      | nd      | nd      | nd      |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd      |
| Methylene chloride            | 31    | 155.0 | nd      |
| Iodomethane                   | 20    | 100.0 | nd      |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd      |
| Naphthalene                   | 30    | 150.0 | 3456    | 5485    | nd      | nd      | nd      | nd      | nd      |
| Propylbenzene                 | 30    | 150.0 | 1449    | 2684    | nd      | nd      | nd      | nd      | nd      |
| Styrene                       | 33    | 165.0 | nd      |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nď      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nď      | nd      | nd      | nd      | nd      | nd      | nd      |
| Tetrachloroethylene           | 27    | 135.0 | nd      |
| Toluene                       | 25    | 125.0 | nd      |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd      |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd      |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nď      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd      | nd      | nd      | nd      | nd      | nd      | nď      |
| Trichloroethylene             | 24    | 120.0 | nd      |
| Trichlorofluoromethane        | 35    | 175.0 | nd      |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd      |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | 42J     | 7680    | nd      | nd      | nd      | nd      | nd      |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | 196     | 1764    | nd      | nd      | nd      | nd      | nd      |
| Vinyl acetate                 | 52    | 260.0 | nd      |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd      |
| m & p-Xylene                  | 75    | 375.0 | nd      | 1524    | nd      | nd      | nd      | nd      | nd      |
| o-Xylene                      | 28    | 140.0 | nd      | 855     | nd      | nd      | nd      | nd      | nd      |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                              |                                        | Quality Contr | rol Data |        |        |        |        |        |
|------------------------------|----------------------------------------|---------------|----------|--------|--------|--------|--------|--------|
| Surrogates<br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |               |          |        |        |        |        |        |
| SURR: Bromofluorobenzene     | 74 - 121                               | 117.0%        | 117.0%   | 105.0% | 95.3%  | 95.0%  | 95.7%  | 93.7%  |
| SURR: Dibromofluoromethane   | 80 - 120                               | 103.3%        | 99.0%    | 102.7% | 102.3% | 101.3% | 101.0% | 100.0% |
| SURR: Toluene-d8             | 81 - 117                               | 109.3%        | 102.3%   | 96.7%  | 94.7%  | 95.0%  | 94.0%  | 95.7%  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics FPA SW-846 Method 8260

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05585           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-45           |
| LN05586           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-50           |
| LN05587           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-55           |
| LN05588           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-60           |
| LN05589           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-65           |
| LN05590           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-70           |
| LN05591           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-75           |

| Compounds                     | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05585<br>Amount<br>(ug/kg) | LN05586<br>Amount<br>(ug/kg) | LN05587<br>Amount<br>(ug/kg) | LN05588<br>Amount<br>(ug/kg) | LN05589<br>Amount<br>(ug/kg) | LN05590<br>Amount<br>(ug/kg) | LN05591<br>Amount<br>(ug/kg) |
|-------------------------------|----------------|----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Acetone                       | 32             | 160.0          | nd                           |
| tert-Amyl methyl ether (TAME) | 23             | 115.0          | nd                           |
| Benzene                       | 26             | 130.0          | nd                           |
| Bromobenzene                  | 26             | 130.0          | nd                           |
| Bromochloromethane            | 24             | 120.0          | nd                           |
| Bromodichloromethane          | 22             | 110.0          | nd                           |
| Bromoform                     | 23             | 115.0          | nd                           |
| Bromomethane                  | 20             | 100.0          | nd                           |
| 2-Butanone (MEK)              | 26             | 130.0          | nd                           |
| tert-Butyl alcohol (TBA)      | 373            | 1865.0         | nd                           |
| n-Butylbenzene                | 29             | 145.0          | nd                           |
| sec-Butylbenzene              | 27             | 135.0          | nd                           |
| tert-Butylbenzene             | 29             | 145.0          | nd                           |
| tert-Butyl ethyl ether (ETBE) | 20             | 100.0          | nd                           |
| Carbon disulfide              | 116            | 580.0          | nd                           |
| Carbon Tetrachloride          | 32             | 160.0          | nd                           |
| Chlorobenzene                 | 28             | 140.0          | nd                           |
| Chloroethane                  | 42             | 210.0          | nd                           |
| 2-Chloroethyl vinyl ether     | 23             | 115.0          | nd                           |
| Chloroform                    | 30             | 150.0          | nd                           |
| Chloromethane                 | 70             | 350.0          | nd                           |
| 2-Chlorotoluene               | 27             | 135.0          | nd                           |
| 4-Chlorotoluene               | 28             | 140.0          | nd                           |
| Dibromochloromethane          | 25             | 125.0          | nd                           |
| 1,2-Dibromo-3-chloropropane   | 31             | 155.0          | nd                           |
| 1,2-Dibromoethane (EDB)       | 23             | 115.0          | nd                           |
| Dibromomethane                | 33             | 165.0          | nd                           |
| 1,2-Dichlorobenzene           | 27             | 135.0          | nd                           |
| 1,3-Dichlorobenzene           | 27             | 135.0          | nd                           |
| 1,4-Dichlorobenzene           | 33             | 165.0          | nd                           | nd                           | nđ                           | nd                           | nd                           | nd                           | nd                           |
| Dichlorodifluoromethane       | 37             | 185.0          | nd                           |
| 1,1-Dichloroethane            | 29             | 145.0          | nd                           |
| 1,2-Dichloroethane            | 22             | 110.0          | nd                           |
| 1,1-Dichloroethene            | 28             | 140.0          | nd                           |
| cis-1,2-Dichloroethene        | 26             | 130.0          | nd                           |
| trans-1,2-Dichloroethene      | 32             | 160.0          | nd                           |
| 1,2-Dichloropropane           | 22             | 110.0          | nd                           |
| 1,3-Dichloropropane           | 21             | 105.0          | nd                           |
| 2,2-Dichloropropane           | 38             | 190.0          | nd                           |
| 1,1-Dichloropropene           | 27             | 135.0          | nd                           |
| cis-1,3-Dichloropropene       | 26             | 130.0          | nd                           |
| trans-1,3-Dichloropropene     | 29             | 145.0          | nd                           |
| Diisopropyl ether (DIPE)      | 26             | 130.0          | nd                           |
| Ethylbenzene                  | 30             | 150.0          | nd                           |
| Hexachlorobutadiene           | 44             | 220.0          | nd                           |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |  |
|-------------------|--------------|-----------|-----------|--------------------|--|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |  |
| LN05585           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-45           |  |
| LN05586           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-50           |  |
| LN05587           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-55           |  |
| LN05588           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-60           |  |
| LN05589           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-65           |  |
| LN05590           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-70           |  |
| LN05591           | 5/13/2013    | 5/13/2013 | 5/17/2013 | KLF-1-75           |  |

| Compounds                   | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05585<br>Amount<br>(ug/kg) | LN05586<br>Amount<br>(ug/kg) | LN05587<br>Amount<br>(ug/kg) | LN05588<br>Amount<br>(ug/kg) | LN05589<br>Amount<br>(ug/kg) | LN05590<br>Amount<br>(ug/kg) | LN05591<br>Amount<br>(ug/kg) |
|-----------------------------|----------------|----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 2-Hexanone                  | 21             | 105.0          | nd                           |
| lsopropylbenzene            | 33             | 165.0          | nd                           |
| p-Isopropyltoluene          | 28             | 140.0          | nd                           |
| Methyl-t-butyl ether (MTBE) | 23             | 115.0          | nd                           |
| Methylene chloride          | 31             | 155.0          | nd                           |
| Methyl iodide (Iodomethane) | 20             | 100.0          | nd                           |
| 4-Methyl-2-pentanone (MIBK) | 19             | 95.0           | nd                           |
| Naphthalene                 | 30             | 150.0          | nd                           |
| Propylbenzene               | 30             | 150.0          | nd                           |
| Styrene (Phenylethylene)    | 33             | 165.0          | nd                           |
| 1,1,1,2-Tetrachloroethane   | 23             | 115.0          | nd                           |
| 1,1,2,2-Tetrachloroethane   | 40             | 200.0          | nd                           |
| Tetrachloroethylene (PCE)   | 27             | 135.0          | nd                           |
| Toluene                     | 25             | 125.0          | nd                           |
| 1,2,3-Trichlorobenzene      | 29             | 145.0          | nd                           |
| 1,2,4-Trichlorobenzene      | 31             | 155.0          | nd                           |
| 1,1,1-Trichloroethane       | 26             | 130.0          | nd                           |
| 1,1,2-Trichloroethane       | 23             | 115.0          | nd                           |
| Trichloroethylene (TCE)     | 24             | 120.0          | nd                           |
| Trichlorofluoromethane      | 35             | 175.0          | nd                           |
| 1,2,3-Trichloropropane      | 22             | 110.0          | nd                           |
| 1,2,4-Trimethylbenzene      | 25             | 125.0          | nd                           |
| 1,3,5-Trimethylbenzene      | 28             | 140.0          | nd                           |
| Vinyl acetate               | 52             | 260.0          | nd                           |
| Vinyl Chloride              | 36             | 180.0          | nd                           |
| m & p-Xylene                | 75             | 375.0          | nd                           |
| o-Xylene                    | 28             | 140.0          | nd                           |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL) nd - Not Detected; below detection limit

|                            |             | Quality Contr | rol Data |        |        |        |       |        |
|----------------------------|-------------|---------------|----------|--------|--------|--------|-------|--------|
| Surragaton                 | QC Limits   |               |          |        |        |        |       |        |
| Surrogates                 | % Recovery  |               |          |        |        |        |       |        |
| 30 (ug/L each)             | Lower-Upper |               |          |        |        |        |       |        |
| SURR: Bromofluorobenzene   | 74 - 121    | 91.0%         | 92.3%    | 91.0%  | 92.3%  | 89.0%  | 92.7% | 91.7%  |
| SURR: Dibromofluoromethane | 80 - 120    | 101.0%        | 100.0%   | 100.3% | 100.3% | 101.0% | 99.7% | 100.0% |
| SURR: Toluene-d8           | 81 - 117    | 95.7%         | 95.0%    | 94.0%  | 94.3%  | 92.7%  | 91.7% | 92.7%  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/13/2013    | 5/13/2013 | 5/17/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | Blank<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|--------------------------|
| Acetone                       | 32           | 160.0        | nd                       |
| tert-Amyl methyl ether (TAME) | 23           | 115.0        | nd                       |
| Benzene                       | 26           | 130.0        | nd                       |
| Bromobenzene                  | 26           | 130.0        | nd                       |
| Bromochioromethane            | 24           | 120.0        | nd                       |
| Bromodichloromethane          | 22           | 110.0        | nd                       |
| Bromoform                     | 23           | 115.0        | nd                       |
| Bromomethane                  | 20           | 100.0        | nd                       |
| Methyl ethyl ketone (MEK)     | 26           | 130.0        | nd                       |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0       | nd                       |
| Butylbenzene                  | 29           | 145.0        | nd                       |
| sec-Butylbenzene              | 27           | 135.0        | nd                       |
| tert-Butylbenzene             | 29           | 145.0        | nd                       |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0        | nd                       |
| Carbon disulfide              | 116          | 580.0        | nd                       |
| Carbon Tetrachloride          | 32           | 160.0        | nd                       |
| Chlorobenzene                 | 28           | 140.0        | nd                       |
| Chloroethane                  | 42           | 210.0        | nd                       |
| 2-Chloroethyl vinyl ether     | 23           | 115.0        | nd                       |
| Chloroform                    | 30           | 150.0        | nd                       |
| Chloromethane                 | 70           | 350.0        | nd                       |
| 2-Chlorotoluene               | 27           | 135.0        | nd                       |
| 4-Chlorotoluene               | 28           | 140.0        | nd                       |
| Dibromochloromethane          | 25           | 125.0        | nd                       |
| 1,2-Dibromo-3-chloropropane   | 31           | 155.0        | nd                       |
| 1,2-Dibromoethane             | 23           | 115.0        | nd                       |
| Dibromomethane                | 33           | 165.0        | nd                       |
| 1,2-Dichlorobenzene           | 27           | 135.0        | nd                       |
| 1,3-Dichlorobenzene           | 27           | 135.0        | nd                       |
| 1,4-Dichlorobenzene           | 33           | 165.0        | nd                       |
| Dichlorodifluoromethane       | 37           | 185.0        | nd                       |
| 1,1-Dichloroethane            | 29           | 145.0        | nd                       |
| 1,2-Dichloroethane            | 22           | 110.0        | nd                       |
| 1,1-Dichloroethene            | 28           | 140.0        | nd                       |
| cis-1,2-Dichloroethene        | 26           | 130.0        | nd                       |
| trans-1,2-Dichloroethene      | 32           | 160.0        | nd                       |
| 1,2-Dichloropropane           | 22           | 110.0        | nd                       |
| 1,3-Dichloropropane           | 21           | 105.0        | nd                       |
| 2,2-Dichloropropane           | 38           | 190.0        | nd                       |
| 1,1-Dichloropropene           | 27           | 135.0        | nd                       |
| cis-1,3-Dichloropropene       | 26           | 130.0        | nd                       |
| trans-1,3-Dichloropropene     | 29           | 145.0        | nd                       |
| Diisopropyl ether (DIPE)      | 26           | 130.0        | nd                       |
| Ethylbenzene                  | 30           | 150.0        | nd                       |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                                   |              | Date               | Date              |                          |
|-----------------------------------|--------------|--------------------|-------------------|--------------------------|
| Chemistry Log No.                 | Date Sampled | Received           | Analyzed          | Sample Description       |
| Blank                             | 5/13/2013    | 5/13/2013          | 5/17/2013         | Method Blank             |
|                                   |              |                    |                   |                          |
|                                   |              |                    |                   |                          |
|                                   |              | ·· P P L L L L L L |                   | <del></del>              |
|                                   |              |                    |                   |                          |
|                                   |              |                    |                   |                          |
|                                   |              |                    |                   |                          |
|                                   |              |                    |                   |                          |
| 2                                 | MOI          | DOI                | Blank             |                          |
| Compounds                         | MDL          | PQL                | Amount            |                          |
|                                   | ug/kg        | ug/kg              | ug/kg             |                          |
| Hexachlorobutadiene               | 44           | 220.0              | nd                |                          |
| nexactiorodutadiene<br>2-Hexanone | 21           | 105.0              | nd                |                          |
| sopropylbenzene                   | 33           | 165.0              | nd                |                          |
| p-Isopropyltoluene                | 28           | 140.0              | nd                |                          |
| Methyl-t-butyl ether (MTBE)       | 23           | 115.0              | nd                |                          |
| Methylene chloride                | 31           | 155.0              | nd                |                          |
| lodomethane                       | 20           | 100.0              | nd                |                          |
| Methyl isobutyl ketone (MIBK)     | 19           | 95.0               | nd                |                          |
| Naphthalene                       | 30           | 150.0              | nd                |                          |
| Propylbenzene                     | 30           | 150.0              | nd                |                          |
| Styrene                           | 33           | 165.0              | nd                |                          |
| 1,1,1,2-Tetrachloroethane         | 23           | 115.0              | nd                |                          |
| 1,1,2,2-Tetrachloroethane         | 40           | 200.0              | nd                |                          |
| Tetrachloroethylene               | 27           | 135.0              | nd                |                          |
| Toluene                           | 25           | 125.0              | nd                |                          |
| 1,2,3-Trichlorobenzene            | 29           | 145.0              | nd                |                          |
| 1,2,4-Trichlorobenzene            | 31           | 155.0              | nd                |                          |
| 1,1,1-Trichloroethane             | 26           | 130.0              | nd                |                          |
| 1,1,2-Trichloroethane             | 23           | 115.0              | nd                |                          |
| Trichloroethylene                 | 24           | 120.0              | nd                |                          |
| Trichlorofluoromethane            | 35           | 175.0              | nd                |                          |
| 1,2,3-Trichloropropane            | 22           | 110.0              | nd                |                          |
| 1,2,4-Trimethylbenzene            | 25           | 125.0              | nd                |                          |
| 1,3,5-Trimethylbenzene            | 28           | 140.0              | nd                |                          |
| Vinyl acetate                     | 52           | 260.0              | nd                |                          |
| Vinyl Chloride (Chloroethene)     | 36           | 180.0              | nd                |                          |
| m & p-Xylene                      | 75           | 375.0              | nd                |                          |
| o-Xylene                          | 28           | 140.0              | nd                |                          |
| MDL - Method Detection Limit      |              |                    | J - Concentration | n above MDL below PQL    |
| PQL - Practical Quantitation Lim  | nit (5xMDL)  |                    |                   | d; below detection limit |
|                                   |              |                    | Quality Control f |                          |
|                                   | QC Limits    |                    | Quality Control [ | <u>vata</u>              |
| Surrogatos                        |              |                    |                   |                          |
| Surrogates                        | % Recovery   |                    |                   |                          |

93.7%

103.3%

93.3%

SURR: Toluene-d8
Comment:

30 (ug/L each)

Lower-Upper

74 - 121

80 - 120

81 - 117

Analyst: Bryan Tiu

SURR: Bromofluorobenzene

SURR: Dibromofluoromethane

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/17/13 ANALYTICAL METHOD: USEPA 8260

BATCH #: LN05578 LN LN05578 LN05579 LN05580 LN05581 LN05582 LN05583 LN05584 LN05585 LN05586 LN05587 LN05588 LN05

LAB SAMPLE I.D.: LN05580 UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 25.9 | 86.3 | 30.0                   | 25.7 | 85.7 | 0.70 % | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 30.9 | 103  | 30.0                   | 31.3 | 104  | 0.97 % | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 29.3 | 97.7 | 30.0                   | 29.8 | 99.3 | 1.6 %  | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 29.6 | 98.7 | 30.0                   | 29.8 | 99.3 | 0.61 % | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.2 | 117  | 30.0                   | 36.0 | 120  | 2.5 %  | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED: 5/17/13 ANALYTICAL METHOD: <u>USEPA 8260</u>

SUPPLY SOURCE: LAB LCS I.D.: Q8087

LOT NUMBER: UNIT: ug/kg

DATE OF SOURCE:

| <u> </u>   |                                                             | T                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                 |
|------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCS RESULT | TRUE VALUE<br>ug/kg                                         | % RECOVERY                                                                                                                                                                                              | Advisory Range                                                                                                                                                                                                                                                                                                           |
| 31.5       | 30                                                          | 105.0                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                 |
| 31.1       | 30                                                          | 103.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                 |
| 31.1       | 30                                                          | 103.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                 |
| 29         | 30                                                          | 96.7                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                 |
| 25.4       | 30                                                          | 84.7                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                 |
| 21.1       | 30                                                          | 70.3                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                 |
| 27.4       | 30                                                          | 91.3                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                 |
| 27         | 30                                                          | 90.0                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                 |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            |                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|            | ug/kg<br>31.5<br>31.1<br>31.1<br>29<br>25.4<br>21.1<br>27.4 | ug/kg         ug/kg           31.5         30           31.1         30           31.1         30           29         30           25.4         30           21.1         30           27.4         30 | ug/kg         ug/kg         % RECOVERY           31.5         30         105.0           31.1         30         103.7           31.1         30         103.7           29         30         96.7           25.4         30         84.7           21.1         30         70.3           27.4         30         91.3 |

Analyst: B. Tiu

Reviewed by: R. Gentallen / 3

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

**PROJECT: FIGUEROA PUMPING STATION** 

Page 1 of 2 Sample Matrix: Soil

|                   | ·            | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05648           | 5/14/2013    | 5/14/2013 | 5/17/2013 | KLF-2-10           |
| LN05649           | 5/14/2013    | 5/14/2013 | 5/17/2013 | KLF-2-15           |
| LN05650           | 5/14/2013    | 5/14/2013 | 5/17/2013 | KLF-2-20           |
| LN05651           | 5/14/2013    | 5/14/2013 | 5/17/2013 | KLF-2-25           |
| LN05652           | 5/14/2013    | 5/14/2013 | 5/17/2013 | KLF-2-30           |
| LN05653           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-35           |
| LN05654           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-40           |

| Compounds                     | MDL           | PQL    | LN05648<br>Amount | LN05649<br>Amount | LN05650<br>Amount | LN05651<br>Amount | LN05652<br>Amount | LN05653<br>Amount | LN05654<br>Amount |
|-------------------------------|---------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                               | ug/kg         | ug/kg  | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             |
| Acetone                       | 32            | 160.0  | nd                | nd                | nd                | nď                | nd                | nd                | nd                |
| tert-Amyl methyl ether (TAME) | 23            | 115.0  | nd                |
| Benzene                       | 26            | 130.0  | nd                |
| Bromobenzene                  | 26            | 130.0  | nd                |
| Bromochloromethane            | 24            | 120.0  | nd                |
| Bromodichloromethane          | 22            | 110.0  | nd                |
| Bromoform                     | 23            | 115.0  | nd                |
| Bromomethane                  | 20            | 100.0  | nd                |
| Methyl ethyl ketone (MEK)     | 26            | 130.0  | nd                |
| tert-Butyl alcohol (TBA)      | 373           | 1865.0 | nd                |
| Butylbenzene                  | 29            | 145.0  | nd                |
| sec-Butylbenzene              | 27            | 135.0  | nd                |
| tert-Butylbenzene             | 29            | 145.0  | nd                |
| tert-Butyl ethyl ether (ETBE) | 20            | 100.0  | nd                |
| Carbon disulfide              | 116           | 580.0  | nd                |
| Carbon Tetrachloride          | 32            | 160.0  | nd                |
| Chlorobenzene                 | 28            | 140.0  | nd                |
| Chloroethane                  | 42            | 210.0  | nd                |
| 2-Chloroethyl vinyl ether     | 23            | 115.0  | nd                |
| Chloroform                    | 30            | 150.0  | nd                |
| Chloromethane                 | 70            | 350.0  | nd                |
| 2-Chlorotoluene               | 27            | 135.0  | nd                |
| 4-Chlorotoluene               | 28            | 140.0  | nd                |
| Dibromochloromethane          | 25            | 125.0  | nd                |
| 1,2-Dibromo-3-chloropropane   | 31            | 155.0  | nd                |
| 1,2-Dibromoethane             | 23            | 115.0  | nd                | nd                | nď                | nd                | nd                | nd                | nd                |
| Dibromomethane                | 33            | 165.0  | nd                |
| 1,2-Dichlorobenzene           | 27            | 135.0  | nd                |
| 1,3-Dichlorobenzene           | 27            | 135.0  | nd                |
| 1,4-Dichlorobenzene           | 33            | 165.0  | nd                |
| Dichlorodifluoromethane       | 37            | 185.0  | nd                |
| 1.1-Dichloroethane            | 29            | 145.0  | nd                |
| 1,2-Dichloroethane            | 22            | 110.0  | nd                |
| 1,1-Dichloroethene            | 28            | 140.0  | nd                |
| cis-1,2-Dichloroethene        | 26            | 130.0  | nd                |
| trans-1,2-Dichloroethene      | 32            | 160.0  | nd                |
| 1,2-Dichloropropane           | 22            | 110.0  | nd                |
| 1,3-Dichloropropane           | 21            | 105.0  | nd                |
| 2,2-Dichloropropane           | 38            | 190.0  | nd                |
| 1,1-Dichloropropene           | 27            | 135.0  | nd                |
| cis-1,3-Dichloropropene       | 26            | 130.0  | nd                |
| trans-1,3-Dichloropropene     | 29            | 145.0  | nd                |
| Diisopropyl ether (DIPE)      | 26            | 130.0  | nd                |
| Ethylbenzene                  | 30            | 150.0  | nd                |
| Hexachlorobutadiene           | 44            | 220.0  | nd                |
| . ionacino codidatorio        | - <b>T</b> -T | 220.0  | , iu              | .14               | 110               |                   | 110               | 114               | በ ላ ሰን            |

020009

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN05648           | 5/14/2013    | 5/14/2013        | 5/17/2013        | KLF-2-10           |
| LN05649           |              |                  | 5/17/2013        | KLF-2-15           |
| LN05650           | 5/14/2013    | 5/14/2013        | 5/17/2013        | KLF-2-20           |
| LN05651           | 5/14/2013    | 5/14/2013        | 5/17/2013        | KLF-2-25           |
| LN05652           |              |                  | 5/17/2013        | KLF-2-30           |
| LN05653           |              |                  | 5/18/2013        | KLF-2-35           |
| LN05654           |              |                  | 5/18/2013        | KLF-2-40           |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05648<br>Amount<br>ug/kg | LN05649<br>Amount<br>ug/kg | LN05650<br>Amount<br>ug/kg | LN05651<br>Amount<br>ug/kg | LN05652<br>Amount<br>ug/kg | LN05653<br>Amount<br>ug/kg | LN05654<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 2-Hexanone                    | 21           | 105.0        | nď                         | nd                         | nd                         | nd                         |                            |                            |                            |
| Isopropylbenzene              | 33           | 165.0        | nd                         | nd                         | nd                         | nd                         | uq                         | nd<br>d                    | nd                         |
| p-Isopropyltoluene            | 28           | 140.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         | nd                         |
| Methyl-t-butyl ether (MTBE)   | 23           | 115.0        | nd                         |
| Methylene chloride            | 31           | 155.0        | nd                         | nd                         | nd                         |                            | nd<br>t                    | nd                         | nd                         |
| lodomethane                   | 20           | 100.0        | nd                         |
| Methyl isobutyl ketone (MIBK) | 19           | 95.0         | nd                         |
| Naphthalene                   | 30           | 150.0        | nd                         | nd                         |                            | nd<br>1                    | nd                         | nd                         | nd                         |
| Propylbenzene                 | 30           | 150.0        | nd                         |
| Styrene                       | 33           | 165.0        | nd                         | nd                         | nd<br>                     | nd                         | nd                         | nd                         | nd                         |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                         | nd                         | nd<br>- d                  | nd                         | nd                         | nd                         | nd                         |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                         |                            | nd                         | nd                         | nd                         | nd                         | nd                         |
| Tetrachioroethylene           | 27           | 135.0        | nd                         | nd<br>                     | nd                         | nd                         | nd                         | nd                         | nd                         |
| Toluene                       | 25           | 125.0        |                            | nd<br>t                    | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                         |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd<br>                     | nď                         | nd                         | nď                         | nd                         | nd                         | nd                         |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd<br>                     | nd                         | nď                         | nd                         | nd                         | nd                         | nd                         |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                         |
| Trichloroethylene             | 23<br>24     | 120.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         |
| Trichlorofluoromethane        | 35           | 175.0        | nd<br>1                    | nd                         | nd                         | nd                         | nd                         | nď                         | nd                         |
| 1,2,3-Trichloropropane        | 22           |              | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         |
| 1,2,4-Trimethylbenzene        | 25<br>25     | 110.0        | nď                         | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,3,5-Trimethylbenzene        | 25<br>28     | 125.0        | nd                         |
| Vinyl acetate                 |              | 140.0        | nd                         | nd                         | nd                         | nd                         | nd ·                       | nd                         | nd                         |
| Vinyl Chloride (Chloroethene) | 52           | 260.0        | nd                         | nd                         | nd                         | nď                         | nd                         | nd                         | nd                         |
| m & p-Xylene                  | 36           | 180.0        | nd                         |
| o-Xylene                      | 75           | 375.0        | nd                         | nd                         | nd                         | nď                         | nd                         | nd                         | nd                         |
| O-Aylelie                     | 28           | 140.0        | nd                         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

| Surrogates<br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper | Quality Cont | rol Data |       |       |       |       |        |
|------------------------------|----------------------------------------|--------------|----------|-------|-------|-------|-------|--------|
| SURR: Bromofluorobenzene     | 74 - 121                               | 114.0%       | 100.0%   | 87.3% | 85.0% | 82.7% | 87.7% | 85.7%  |
| SURR: Dibromofluoromethane   | 80 - 120                               | 100.0%       | 100.7%   | 99.0% | 99.7% | 99.3% | 99.3% | 100.3% |
| SURR: Toluene-d8             | 81 - 117                               | 102.0%       | 95.0%    | 94.7% | 91.7% | 89.0% | 88.7% | 86.7%  |

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

**PROJECT: FIGUEROA PUMPING STATION** 

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05655           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-45           |
| LN05656           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-50           |
| LN05657           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-55           |
| LN05658           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-60           |
| LN05659           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-65           |

| Compounds                     | MDL     | PQL     | LN05655<br>Amount | LN05656<br>Amount | LN05657<br>Amount | LN05658<br>Amount | LN05659<br>Amount |
|-------------------------------|---------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                               | (ug/kg) | (ug/kg) | (ug/kg)           | (ug/kg)           | (ug/kg)           | (ug/kg)           | (ug/kg)           |
| Acetone                       | 32      | 160.0   | nd                | nd                | nd                | nd                | nd                |
| tert-Amyl methyl ether (TAME) | 23      | 115.0   | nd                | nd                | nd                | nd                | nd                |
| Benzene                       | 26      | 130.0   | nd                | nd                | nd                | nd                | nd                |
| Bromobenzene                  | 26      | 130.0   | nd                | nd                | nd                | nd                | nd                |
| Bromochloromethane            | 24      | 120.0   | nd                | nd                | nd                | nd                | nd                |
| Bromodichloromethane          | 22      | 110.0   | nd                | nd                | nd                | nd                | nd                |
| Bromoform                     | 23      | 115.0   | nd                | nd                | nd                | nd                | nd                |
| Bromomethane                  | 20      | 100.0   | nd                | nd                | nd                | nd                | nd                |
| 2-Butanone (MEK)              | 26      | 130.0   | nd                | nd                | nd                | nd                | nd                |
| tert-Butyl alcohol (TBA)      | 373     | 1865.0  | nd                | nd                | nd                | nd                | nd                |
| n-Butylbenzene                | 29      | 145.0   | nd                | nd                | nd                | nd                | nd                |
| sec-Butylbenzene              | 27      | 135.0   | nd                | nd                | nd                | nd                | nd                |
| tert-Butylbenzene             | 29      | 145.0   | nd                | nd                | nd                | nd                | nd                |
| tert-Butyl ethyl ether (ETBE) | 20      | 100.0   | nd                | nd                | nd                | nd                | nd                |
| Carbon disulfide              | 116     | 580.0   | nd                | nd                | nd                | nd                | nd                |
| Carbon Tetrachloride          | 32      | 160.0   | nd                | nd                | nd                | nd                | nd                |
| Chlorobenzene                 | 28      | 140.0   | nd                | nd                | nd                | nd                | nd                |
| Chloroethane                  | 42      | 210.0   | nd                | nd                | nd                | nd                | nd                |
| 2-Chloroethyl vinyl ether     | 23      | 115.0   | nd                | nd                | nd                | nd                | nd                |
| Chloroform                    | 30      | 150.0   | nd                | nd                | nd                | nd                | nd                |
| Chloromethane                 | 70      | 350.0   | nd                | nd                | nd                | nd                | nd                |
| 2-Chlorotoluene               | 27      | 135.0   | nd                | nd                | nd                | nd                | nd                |
| 4-Chlorotoluene               | 28      | 140.0   | nd                | nd                | nd                | nd                | nd                |
| Dibromochloromethane          | 25      | 125.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2-Dibromo-3-chloropropane   | 31      | 155.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2-Dibromoethane (EDB)       | 23      | 115.0   | nd                | nd                | nd                | nd                | nd                |
| Dibromomethane                | 33      | 165.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2-Dichlorobenzene           | 27      | 135.0   | nd                | nd                | nd                | nd                | nd                |
| 1,3-Dichlorobenzene           | 27      | 135.0   | nd                | nd                | nd                | nd                | nd                |
| 1,4-Dichlorobenzene           | 33      | 165.0   | nd                | nd                | nd                | nd                | nd                |
| Dichlorodifluoromethane       | 37      | 185.0   | nd                | nd                | nd                | nd                | nd                |
| 1,1-Dichloroethane            | 29      | 145.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2-Dichloroethane            | 22      | 110.0   | nd                | nd                | nd                | nd                | nd                |
| 1,1-Dichloroethene            | 28      | 140.0   | nd                | nd                | nd                | nd                | nd                |
| cis-1,2-Dichloroethene        | 26      | 130.0   | nd                | nd                | nd                | nd                | nď                |
| trans-1,2-Dichloroethene      | 32      | 160.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2-Dichloropropane           | 22      | 110.0   | nd                | nd                | nd                | nd                | nd                |
| 1,3-Dichloropropane           | 21      | 105.0   | nd                | nd                | nd                | nd                | nd                |
| 2,2-Dichloropropane           | 38      | 190.0   | nd                | nd                | nd                | nd                | nd                |
| 1,1-Dichloropropene           | 27      | 135.0   | nd                | nd                | nd                | nd                | nd                |
| cis-1,3-Dichloropropene       | 26      | 130.0   | nd                | nd                | nd                | nd                | nd                |
| trans-1,3-Dichloropropene     | 29      | 145.0   | nd                | nd                | nd                | nd                | nd                |
| Diisopropyl ether (DIPE)      | 26      | 130.0   | nd                | nd                | nd                | nd                | nd                |
| Ethylbenzene                  | 30      | 150.0   | nd                | nd                | nd                | nd                | nd                |
| Hexachlorobutadiene           | 44      | 220.0   | nd                | nd                | nd                | nd                | nd                |

Report of GC/MS Analysis for Purgeable Volatile Organics
FPA SW-846 Method 8260

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05655           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-45           |
| LN05656           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-50           |
| LN05657           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-55           |
| LN05658           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-60           |
| LN05659           | 5/14/2013    | 5/14/2013 | 5/18/2013 | KLF-2-65           |
|                   |              |           |           | <del></del>        |
|                   |              |           |           |                    |

| Compounds                   | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05655<br>Amount<br>(ug/kg) | LN05656<br>Amount | LN05657<br>Amount | LN05658<br>Amount | LN05659<br>Amount |
|-----------------------------|----------------|----------------|------------------------------|-------------------|-------------------|-------------------|-------------------|
|                             | (ug/kg)        | (ug/kg)        | (ug/kg)                      | (ug/kg)           | (ug/kg)           | (ug/kg)           | (ug/kg)           |
| 2-Hexanone                  | 21             | 105.0          | nd                           | nd                | nd                | nd                | nd                |
| Isopropylbenzene            | 33             | 165.0          | nd                           | nd                | nd                | nd                | nd                |
| p-Isopropyltoluene          | 28             | 140.0          | nd                           | nd                | nd                | nd                | nd                |
| Methyl-t-butyl ether (MTBE) | 23             | 115.0          | nd                           | nd                | nd                | nd                | nd                |
| Methylene chloride          | 31             | 155.0          | nd                           | nd                | nd                | nd                | nd                |
| Methyl iodide (lodomethane) | 20             | 100.0          | nd                           | nd                | nd                | nd                | nd                |
| 4-Methyl-2-pentanone (MIBK) | 19             | 95.0           | nd                           | nd                | nd                | nd                | nd                |
| Naphthalene                 | 30             | 150.0          | nd                           | nd                | nd                | nd                | nd                |
| Propylbenzene               | 30             | 150.0          | nd                           | nd                | nd                | nd                | nd                |
| Styrene (Phenylethylene)    | 33             | 165.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,1,1,2-Tetrachloroethane   | 23             | 115.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,1,2,2-Tetrachloroethane   | 40             | 200.0          | nd                           | nd                | nd                | nd                | nd                |
| Tetrachloroethylene (PCE)   | 27             | 135.0          | nd                           | nd                | nd                | nd                | nd                |
| Toluene                     | 25             | 125.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,2,3-Trichlorobenzene      | 29             | 145.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,2,4-Trichlorobenzene      | 31             | 155.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,1,1-Trichloroethane       | 26             | 130.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,1,2-Trichloroethane       | 23             | 115.0          | nd                           | nd                | nd                | nd                | nd                |
| Trichloroethylene (TCE)     | 24             | 120.0          | nd                           | nd                | nd                | nd                | nd                |
| Trichlorofluoromethane      | 35             | 175.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,2,3-Trichloropropane      | 22             | 110.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,2,4-Trimethylbenzene      | 25             | 125.0          | nd                           | nd                | nd                | nd                | nd                |
| 1,3,5-Trimethylbenzene      | 28             | 140.0          | nd                           | nd                | nd                | nd                | nd                |
| Vinyl acetate               | 52             | 260.0          | nd                           | nd                | nd                | nd                | nd                |
| Vinyl Chloride              | 36             | 180.0          | nd                           | nd                | nd                | nd                | nd                |
| m & p-Xylene                | 75             | 375.0          | nd                           | nd                | nd                | nd                | nd                |
| o-Xylene                    | 28             | 140.0          | nd                           | nd                | nd                | nd                | nd                |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL)

nd - Not Detected; below detection limit

|                            |             | Quality Contro | ol Data |       |       |       |
|----------------------------|-------------|----------------|---------|-------|-------|-------|
|                            | QC Limits   |                |         |       |       |       |
| Surrogates                 | % Recovery  |                |         |       |       |       |
| 30 (ug/L each)             | Lower-Upper |                |         |       |       |       |
| SURR: Bromofluorobenzene   | 74 - 121    | 89.3%          | 88.0%   | 88.7% | 84.3% | 89.0% |
| SURR: Dibromofluoromethane | 80 - 120    | 99.7%          | 98.0%   | 97.7% | 98.0% | 97.0% |
| SURR: Toluene-d8           | 81 - 117    | 88.7%          | 88.7%   | 89.3% | 88.3% | 90.7% |

Comment:

Analyst: Bryan Tiu Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                   |              | Date      | Date      | 144 400.           |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled |           |           | Sample Description |
| Blank             | 5/14/2013    | 5/14/2013 | 5/17/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
| <u> </u>          |              |           |           |                    |

|                               |       |        | Blank  |
|-------------------------------|-------|--------|--------|
| Compounds                     | MDL   | PQL    | Amount |
|                               | ug/kg | ug/kg  | ug/kg  |
| Acetone                       | 32    | 160.0  | nd     |
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd     |
| Benzene                       | 26    | 130.0  | nd     |
| Bromobenzene                  | 26    | 130.0  | nd     |
| Bromochloromethane            | 24    | 120.0  | nd     |
| Bromodichloromethane          | 22    | 110.0  | nd     |
| Bromoform                     | 23    | 115.0  | nd     |
| Bromomethane                  | 20    | 100.0  | nd     |
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd     |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd     |
| Butylbenzene                  | 29    | 145.0  | nd     |
| sec-Butylbenzene              | 27    | 135.0  | nd     |
| tert-Butylbenzene             | 29    | 145.0  | nd     |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd     |
| Carbon disulfide              | 116   | 580.0  | nd     |
| Carbon Tetrachloride          | 32    | 160.0  | nd     |
| Chlorobenzene                 | 28    | 140.0  | nd     |
| Chloroethane                  | 42    | 210.0  | nd     |
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd     |
| Chloroform                    | 30    | 150.0  | nd     |
| Chloromethane                 | 70    | 350.0  | nd     |
| 2-Chlorotoluene               | 27    | 135.0  | nd     |
| 4-Chlorotoluene               | 28    | 140.0  | nd     |
| Dibromochloromethane          | 25    | 125.0  | nd     |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd     |
| 1,2-Dibromoethane             | 23    | 115.0  | nd     |
| Dibromomethane                | 33    | 165.0  | nd     |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd     |
| Dichlorodifluoromethane       | 37    | 185.0  | nd     |
| 1,1-Dichloroethane            | 29    | 145.0  | nđ     |
| 1,2-Dichloroethane            | 22    | 110.0  | nd     |
| 1,1-Dichloroethene            | 28    | 140.0  | nd     |
| cis-1,2-Dichloroethene        | 26    | 130.0  | nd     |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd     |
| 1,2-Dichloropropane           | 22    | 110.0  | nd     |
| 1,3-Dichloropropane           | 21    | 105.0  | nd     |
| 2,2-Dichloròpropane           | 38    | 190.0  | nd     |
| 1,1-Dichloropropene           | 27    | 135.0  | nd     |
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd     |
| trans-1,3-Dichloropropene     | 29    | 145.0  | nd     |
| Diisopropyl ether (DIPE)      | 26    | 130.0  | nd     |
| Ethylbenzene                  | 30    | 150.0  | nd     |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

**PROJECT: FIGUEROA PUMPING STATION** 

Sample Matrix:

|          | Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|----------|-------------------|--------------|------------------|------------------|--------------------|
|          | Blank             | 5/14/2013    | 5/14/2013        | 5/17/2013        | Method Blank       |
| $\Vdash$ | <u></u>           |              |                  |                  |                    |
|          |                   |              |                  |                  |                    |
| $\vdash$ |                   |              |                  |                  |                    |
|          |                   |              |                  |                  |                    |

Soil

|                               |       |       | Blank  |
|-------------------------------|-------|-------|--------|
| Compounds                     | MDL   | PQL   | Amount |
| •                             | ug/kg | ug/kg | ug/kg  |
| Hexachlorobutadiene           | 44    | 220.0 | nd     |
| 2-Hexanone                    | 21    | 105.0 | nd     |
| Isopropylbenzene              | 33    | 165.0 | nd     |
| p-Isopropyitoluene            | 28    | 140.0 | nd     |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd     |
| Methylene chloride            | 31    | 155.0 | nd     |
| lodomethane                   | 20    | 100.0 | nd     |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd     |
| Naphthalene                   | 30    | 150.0 | nd     |
| Propylbenzene                 | 30    | 150.0 | nd     |
| Styrene                       | 33    | 165.0 | nd     |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd     |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd     |
| Tetrachloroethylene           | 27    | 135.0 | nd     |
| Toluene                       | 25    | 125.0 | nd     |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd     |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd     |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd     |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd     |
| Trichloroethylene             | 24    | 120.0 | nd     |
| Trichlorofluoromethane        | 35    | 175.0 | nd     |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd     |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd     |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd     |
| Vinyl acetate                 | 52    | 260.0 | nd     |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd     |
| m & p-Xylene                  | 75    | 375.0 | nd     |
| o-Xylene                      | 28    | 140.0 | nd     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |             | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
|                            | QC Limits   | <del>.</del> .       |  |
| <u>Surrogates</u>          | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper |                      |  |
| URR: Bromofluorobenzene    | 74 - 121    | 88.3%                |  |
| SURR: Dibromofluoromethane | 80 - 120    | 102.0%               |  |
| SURR: Toluene-d8           | 81 - 117    | 93.0%                |  |

Comment:

Analyst: Bryan Tiu

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/17/13 ANALYTICAL METHOD: <u>USEPA 8260</u>

BATCH #: LN05648 LN LN05648 LN05649 LN05650 LN05651 LN05652 LN05653 LN05654 LN05655 LN05656 LN05657 LN05658 LN056

LAB SAMPLE I.D.: LN05649 UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD   | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|-------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 28.3 | 94.3 | 30.0                   | 29.6 | 98.7 | 4.6 % | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 30.1 | 100  | 30.0                   | 30.8 | 103  | 3.0 % | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 29.0 | 96.7 | 30.0                   | 30.5 | 102  | 5.3 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 29.1 | 97.0 | 30.0                   | 29.6 | 98.7 | 1.7 % | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 34.5 | 115  | 30.0                   | 35.4 | 118  | 2.6 % | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED: 5117/2013 ANALYTICAL METHOD: <u>USEPA 8260</u>

SUPPLY SOURCE: LAB LCS I.D.: Q5057

LOT NUMBER: UNIT: ug/kg

DATE OF SOURCE:

|                       | 1                   |                     | 1          | T i            |
|-----------------------|---------------------|---------------------|------------|----------------|
| ANALYTE               | LCS RESULT<br>ug/kg | TRUE VALUE<br>ug/kg | % RECOVERY | Advisory Range |
| 1,1,2-Trichloroethane | 32.9                | 30                  | 109.7      | 70 - 130       |
| 1,2-Dichloroethane    | 33.1                | 30                  | 110.3      | 70 - 130       |
| 1,4-Dichlorobenzene   | 32                  | 30                  | 106.7      | 70 - 130       |
| Benzene               | 30.8                | 30                  | 102.7      | 70 - 130       |
| Bromoform             | 22.7                | 30                  | 75.7       | 70 - 130       |
| Carbon Tetrachloride  | 21.1                | 30                  | 70.3       | 70 - 130       |
| Tetrachloroethylene   | 30                  | 30                  | 100.0      | 70 - 130       |
| Trichloroethylene     | 29.3                | 30                  | 97.7       | 70 - 130       |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |

Report of GC/MS Analysis for Purgeable Volatile Organics
EPA SW-846 Method 8260
Page 1 of 2
ING STATION Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date         | Date            |                    |                 |                 |                 | *··**           | ***          |
|-------------------|--------------|--------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------|--------------|
| Chemistry Log No. | Date Sampled | Received     | Analyzed        | Sample Description |                 |                 |                 |                 |              |
| LN05740           | 5/15/2013    | 5/15/2013    | 5/20/2013       |                    | KLF-3-10        |                 |                 |                 |              |
| LN05741           | 5/15/2013    | 5/15/2013    | 5/20/2013       |                    | KLF-3-15        |                 |                 |                 |              |
| LN05742           | 5/15/2013    | 5/15/2013    | 5/21/2013       |                    | KLF-3-20        |                 |                 |                 |              |
| LN05743           | 5/15/2013    | 5/15/2013    | 5/21/2013       |                    | KLF-3-25        |                 |                 | •               |              |
| LN05744           | 5/15/2013    | 5/15/2013    | 5/21/2013       |                    | KLF-3-30        |                 | ·               |                 |              |
| LN05745           | 5/15/2013    | 5/15/2013    | 5/21/2013       |                    | KLF-3-35        |                 |                 | -               |              |
| LN05746           | 5/15/2013    | 5/15/2013    | 5/21/2013       |                    | KLF-3-40        |                 |                 |                 |              |
|                   |              |              | LN05740         | LN05741            | LN05742         | LN05743         | LN05744         | LN05745         | LN05746      |
| Compounds         | MDL<br>ug/kg | PQL<br>ug/kg | Amount<br>ug/kg | Amount<br>ug/kg    | Amount<br>ug/kg | Amount<br>ug/kg | Amount<br>ug/kg | Amount<br>ug/kg | Amount ug/kg |

| Compounds                                             | MDL       | PQL             | Amount    | Amount   | Amount   | Amount   | Amount    | Amount   | Amount   |
|-------------------------------------------------------|-----------|-----------------|-----------|----------|----------|----------|-----------|----------|----------|
| •                                                     | ug/kg     | ug/kg           | ug/kg     | ug/kg    | ug/kg    | ug/kg    | ug/kg     | ug/kg    | ug/kg    |
| A . 45 .                                              |           | 400.0           |           | ,        |          |          |           |          |          |
| Acetone                                               | 32        | 160.0           | nd        | nd       | nd<br>nd | nd       | nd<br>nd  | nd       | nd<br>   |
| tert-Amyl methyl ether (TAME)                         | 23        | 115.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd<br>   |
| Benzene                                               | 26<br>26  | 130.0           | nd        | nd       | nd       | nd       | nd<br>    | nd       | nd       |
| Bromobenzene                                          | 26        | 130.0           | nd        | nd       | nd       | nd       | nd        | nd<br>   | nd       |
| Bromochloromethane                                    | 24        | 120.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd<br>   |
| Bromodichloromethane                                  | 22<br>23  | 110.0<br>115.0  | nd        | nd       | nd       | nd       | nd<br>=-d | nd       | nd       |
| Bromoform                                             | 23<br>20  | 100.0           | nd<br>• d | nd       | nd<br>nd | nd       | nd        | nd       | nd       |
| Bromomethane                                          | 20<br>26  |                 | nd<br>ad  | nd<br>nd | nd<br>nd | nd<br>ad | nd        | nd<br>ad | nd       |
| Methyl ethyl ketone (MEK)<br>tert-Butyl alcohol (TBA) | 26<br>373 | 130.0<br>1865.0 | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| , , ,                                                 | 29        | 145.0           | nd        | nd<br>nd | nd<br>nd | nd<br>nd | nd<br>nd  | nd       | nd       |
| Butylbenzene                                          | 29<br>27  | 135.0           | nd<br>nd  | nd       | nd       |          | nd<br>ad  | nd<br>nd | nd<br>nd |
| sec-Butylbenzene<br>tert-Butylbenzene                 | 27<br>29  | 145.0           | nd        | nd<br>nd | nd<br>nd | nd<br>nd | nd<br>nd  | nd<br>nd | nd<br>od |
| tert-Butyloenzene<br>tert-Butyl ethyl ether (ETBE)    | 29<br>20  | 145.0           | nd        | nd       | nd       | nd       | nd        | nd<br>nd | nd       |
| Carbon disulfide                                      | 116       | 580.0           | nd        | nd       | nd       | nd       | nd        | nd<br>nd | nd<br>nd |
| Carbon Tetrachloride                                  | 32        | 160.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Chlorobenzene                                         | 28        | 140.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Chloroethane                                          | 42        | 210.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 2-Chloroethyl vinyl ether                             | 23        | 115.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Chloroform                                            | 30        | 150.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Chloromethane                                         | 70        | 350.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 2-Chlorotoluene                                       | 27        | 135.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 4-Chlorotoluene                                       | 28        | 140.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Dibromochloromethane                                  | 25        | 125.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2-Dibromo-3-chloropropane                           | 31        | 155.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2-Dibromoethane                                     | 23        | 115.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Dibromomethane                                        | 33        | 165.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2-Dichlorobenzene                                   | 27        | 135.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,3-Dichlorobenzene                                   | 27        | 135.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,4-Dichlorobenzene                                   | 33        | 165.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Dichlorodifluoromethane                               | 37        | 185.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,1-Dichloroethane                                    | 29        | 145.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2-Dichloroethane                                    | 22        | 110.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,1-Dichloroethene                                    | 28        | 140.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| cis-1,2-Dichloroethene                                | 26        | 130.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| trans-1,2-Dichloroethene                              | 32        | 160.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,2-Dichloropropane                                   | 22        | 110.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,3-Dichloropropane                                   | 21        | 105.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 2,2-Dichloropropane                                   | 38        | 190.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| 1,1-Dichloropropene                                   | 27        | 135.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| cis-1,3-Dichloropropene                               | 26        | 130.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| trans-1,3-Dichloropropene                             | 29        | 145.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Diisopropyl ether (DIPE)                              | 26        | 130.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Ethylbenzene                                          | 30        | 150.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
| Hexachlorobutadiene                                   | 44        | 220.0           | nd        | nd       | nd       | nd       | nd        | nd       | nd       |
|                                                       |           |                 |           |          |          |          |           |          | 0206     |

020016

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

|              | Date                                                                       | Date                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date Sampled | Received                                                                   | Analyzed                                                                                                                                      | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5/15/2013    | 5/15/2013                                                                  | 5/20/2013                                                                                                                                     | KLF-3-10                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5/15/2013    | 5/15/2013                                                                  | 5/20/2013                                                                                                                                     | KLF-3-15                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5/15/2013    | 5/15/2013                                                                  | 5/21/2013                                                                                                                                     | KLF-3-20                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5/15/2013    | 5/15/2013                                                                  | 5/21/2013                                                                                                                                     | KLF-3-25                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5/15/2013    | 5/15/2013                                                                  | 5/21/2013                                                                                                                                     | KLF-3-30                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5/15/2013    | 5/15/2013                                                                  | 5/21/2013                                                                                                                                     | KLF-3-35                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5/15/2013    | 5/15/2013                                                                  | 5/21/2013                                                                                                                                     | KLF-3-40                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | 5/15/2013<br>5/15/2013<br>5/15/2013<br>5/15/2013<br>5/15/2013<br>5/15/2013 | Date Sampled Received 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 5/15/2013 | Date Sampled         Received         Analyzed           5/15/2013         5/15/2013         5/20/2013           5/15/2013         5/15/2013         5/20/2013           5/15/2013         5/15/2013         5/21/2013           5/15/2013         5/15/2013         5/21/2013           5/15/2013         5/15/2013         5/21/2013           5/15/2013         5/15/2013         5/21/2013           5/15/2013         5/15/2013         5/21/2013 |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05740<br>Amount<br>ug/kg | LN05741<br>Amount<br>ug/kg | LN05742<br>Amount<br>ug/kg | LN05743<br>Amount<br>ug/kg | LN05744<br>Amount<br>ug/kg | LN05745<br>Amount<br>ug/kg | LN05746<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 2-Hexanone                    | 21           | 105.0        | nd                         | nd                         | nd                         | nď                         | nd                         | nd                         | nd                         |
| Isopropylbenzene              | 33           | 165.0        | nd                         |
| p-isopropyitoluene            | 28           | 140.0        | nd                         |
| Methyl-t-butyl ether (MTBE)   | 23           | 115.0        | nd                         |
| Methylene chloride            | 31           | 155.0        | nd                         |
| lodomethane                   | 20           | 100.0        | nd                         |
| Methyl isobutyl ketone (MIBK) | 19           | 95.0         | nd                         |
| Naphthalene                   | 30           | 150.0        | nd                         |
| Propylbenzene                 | 30           | 150.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nđ                         |
| Styrene                       | 33           | 165.0        | nd                         |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                         |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                         |
| Tetrachioroethylene           | 27           | 135.0        | nd -                       | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Toluene                       | 25           | 125.0        | nd                         |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                         |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd                         |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd                         |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                         |
| Trichloroethylene             | 24           | 120.0        | nd                         | nd                         | nd                         | nď                         | nd                         | nd                         | nd                         |
| Trichlorofluoromethane        | 35           | 175.0        | nd                         |
| 1,2,3-Trichloropropane        | 22           | 110.0        | nd                         |
| 1,2,4-Trimethylbenzene        | 25           | 125.0        | nd                         |
| 1,3,5-Trimethylbenzene        | 28           | 140.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nđ                         | nd                         |
| Vinyl acetate                 | 52           | 260.0        | nd                         |
| Vinyl Chloride (Chloroethene) | 36           | 180.0        | nd                         |
| m & p-Xylene                  | 75           | 375.0        | nd                         |
| o-Xylene                      | 28           | 140.0        | nd                         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |             | Quality Contr | ol Data |        |        |        |        |        |
|----------------------------|-------------|---------------|---------|--------|--------|--------|--------|--------|
|                            | QC Limits   |               |         |        |        |        |        |        |
| Surrogates                 | % Recovery  |               |         |        |        |        |        |        |
| 30 (ug/L each)             | Lower-Upper |               |         |        |        |        |        |        |
| SURR: Bromofluorobenzene   | 74 - 121    | 101.3%        | 103.3%  | 100.7% | 100.7% | 101.0% | 100.3% | 100.3% |
| SURR: Dibromofluoromethane | 80 - 120    | 98.0%         | 97.0%   | 96.3%  | 97.0%  | 96.7%  | 96.0%  | 96.0%  |
| SURR: Toluene-d8           | 81 - 117    | 94.0%         | 93.0%   | 93.3%  | 93.3%  | 94.0%  | 92.7%  | 92.7%  |

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

**PROJECT: FIGUEROA PUMPING STATION** 

|                   |              | Date      | Date      | <del></del>                           |
|-------------------|--------------|-----------|-----------|---------------------------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description                    |
| LN05747           | 5/15/2013    | 5/15/2013 | 5/21/2013 | KLF-3-45                              |
| LN05748           | 5/15/2013    | 5/15/2013 | 5/21/2013 | KLF-3-50                              |
| LN05749           | 5/15/2013    | 5/15/2013 | 5/21/2013 | KLF-3-55                              |
| LN05750           | 5/15/2013    | 5/15/2013 | 5/21/2013 | KLF-3-60                              |
| LN05751           | 5/15/2013    | 5/15/2013 | 5/21/2013 | KLF-3-65                              |
| ***               |              |           |           | · · · · · · · · · · · · · · · · · · · |
|                   |              |           |           |                                       |

|                                                    |                      |                | LN05747  | LN05748  | LN05749  | LN05750  | LN05751   |
|----------------------------------------------------|----------------------|----------------|----------|----------|----------|----------|-----------|
| Compounds                                          | MDL                  | PQL            | Amount   | Amount   | Amount   | Amount   | Amount    |
|                                                    | (ug/kg)              | (ug/kg)        | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)   |
| Agatana                                            | 32                   | 160.0          | امد      |          | امما     | لمم      | امما      |
| Acetone                                            | 32<br>23             | 160.0          | nd       | nd       | nd<br>nd | nd       | nd<br>nd  |
| tert-Amyl methyl ether (TAME)                      | 23<br>26             |                | nd<br>nd | nd       |          | nd       | nd<br>nd  |
| Benzene<br>Bromobenzene                            | 26<br>26             | 130.0          | nd<br>   | nd       | nd       | nd       | nd<br>    |
| Bromochloromethane                                 | 26<br>24             | 130.0<br>120.0 | nd<br>nd | nd       | nd<br>nd | nd       | nd<br>nd  |
| Bromodichloromethane                               | 24                   | 110.0          |          | nd       |          | nd<br>ad |           |
| Bromoform                                          | 23                   | 115.0          | nd<br>ad | nd       | nd       | nd       | nd<br>nd  |
| Bromomethane                                       | 20                   | 100.0          | nd<br>nd | nd<br>nd | nd       | nd       | nd<br>nd  |
|                                                    | 26                   |                |          | nd<br>nd | nd       | nd       |           |
| 2-Butanone (MEK)                                   | 26<br>373            | 130.0          | nd       | nd       | nd       | nd       | nd        |
| tert-Butyl alcohol (TBA)                           | 373<br>29            | 1865.0         | nd       | nd       | nd       | nd       | nd<br>nd  |
| n-Butylbenzene                                     | 2 <del>9</del><br>27 | 145.0          | nd<br>nd | nd       | nd       | nd       |           |
| sec-Butylbenzene                                   | 21<br>29             | 135.0<br>145.0 | nd       | nd<br>nd | nd       | nd<br>nd | nd<br>nd  |
| tert-Butylbenzene                                  | 29                   | 100.0          | nd<br>nd | nd<br>nd | nd       | nd       | nd<br>nd  |
| tert-Butyl ethyl ether (ETBE) Carbon disulfide     | 20<br>116            | 580.0          | nd<br>nd | nd<br>nd | nd       | nd<br>nd | nd        |
| Carbon Tetrachloride                               | 32                   | 160.0          | nd       | nd       | nd       | nd<br>ad | nd        |
| Chlorobenzene                                      | 28                   |                | nd<br>nd | nd       | nd       | nd       | nd        |
| Chloroethane                                       | 20<br><b>4</b> 2     | 140.0          | nd<br>nd | nd<br>nd | nd<br>md | nd       | nd<br>nd  |
| •                                                  | 23                   | 210.0          | nd       | nd<br>   | nd<br>   | nd       | nd<br>    |
| 2-Chloroethyl vinyl ether<br>Chloroform            | 23<br>30             | 115.0<br>150.0 | nd<br>nd | nd<br>nd | nd<br>nd | nd<br>nd | nd<br>nd  |
| Chloromethane                                      | 70                   | 350.0          | nd<br>nd | nd<br>nd | nd       | nd       | nd<br>nd  |
| 2-Chlorotoluene                                    | 70<br>27             | 135.0          | nd<br>nd |          | nd       | nd<br>=d |           |
|                                                    | 28                   |                | nd       | nd<br>ad | nd       | nd       | nd<br>==d |
| 4-Chlorotoluene                                    | ∠o<br>25             | 140.0          | nd<br>   | nd       | nd<br>   | nd       | nd        |
| Dibromochloromethane                               | 25<br>31             | 125.0<br>155.0 | nd       | nd       | nd       | nd       | nd        |
| 1,2-Dibromo-3-chloropropane                        | 23                   | 115.0          | nd       | nd       | nd       | nd<br>ad | nd        |
| 1,2-Dibromoethane (EDB)                            | 23<br>33             |                | nd       | nd       | nd       | nd<br>nd | nd        |
| Dibromomethane 1,2-Dichlorobenzene                 | 33<br>27             | 165.0<br>135.0 | nd<br>ad | nd       | nd<br>nd | nd<br>ad | nd<br>nd  |
| ,                                                  | 27<br>27             | 135.0          | nd       | nd<br>nd |          | nd<br>nd |           |
| 1,3-Dichlorobenzene                                | 33                   | 165.0          | nd<br>ad | nd       | nd<br>nd | nd       | nd        |
| 1,4-Dichlorobenzene                                |                      |                | nd<br>ad | nd       | nd<br>nd | nd<br>ad | nd        |
| Dichlorodifluoromethane 1.1-Dichloroethane         | 37<br>29             | 185.0          | nd       | nd       | nd<br>d  | nd       | nd        |
| '                                                  | 29                   | 145.0          | nd<br>nd | nd<br>nd | nd<br>nd | nd<br>nd | nd<br>nd  |
| 1,2-Dichloroethane                                 | 28                   | 110.0          | nd       | nd       | nd       | nd       | nd        |
| 1,1-Dichloroethene                                 |                      | 140.0          | nd       | nd       | nd       | nd       | nd        |
| cis-1,2-Dichloroethene<br>trans-1,2-Dichloroethene | 26<br>32             | 130.0          | nd       | nd       | nd       | nd       | nd        |
|                                                    | 32<br>22             | 160.0          | nd<br>-d | nd       | nd       | nd       | nd        |
| 1,2-Dichloropropane                                |                      | 110.0          | nd       | nd       | nd       | nd       | nd        |
| 1,3-Dichloropropane                                | 21                   | 105.0          | nd       | nd       | nd       | nd       | nd        |
| 2,2-Dichloropropane                                | 38                   | 190.0          | nd       | nd       | nd       | nd       | nd        |
| 1,1-Dichloropropene                                | 27<br>26             | 135.0          | nd       | nd       | nd       | nd       | nd        |
| cis-1,3-Dichloropropene                            | 26<br>20             | 130.0          | nd       | nd       | nd<br>nd | nd       | nd        |
| trans-1,3-Dichloropropene                          | 29                   | 145.0          | nd       | nd       | nd       | nd       | nd        |
| Diisopropyl ether (DIPE)                           | 26                   | 130.0          | nd       | nd<br>   | nd       | nd       | nd        |
| Ethylbenzene                                       | 30                   | 150.0          | nd       | nd       | nd       | nd       | nd        |
| Hexachlorobutadiene                                | 44                   | 220.0          | nd       | nd       | nd       | nd       | nd        |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

| LN05747 5/15<br>LN05748 5/15 |                  | 1 Analyzed<br>3 5/21/2013 | Sample Description KLF-3-45 |  |
|------------------------------|------------------|---------------------------|-----------------------------|--|
| LN05748 5/15                 |                  | 3 5/21/2013               | KLF-3-45                    |  |
|                              | 10040 545004     |                           |                             |  |
|                              | /2013   5/15/201 | 3 5/21/2013               | KLF-3-50                    |  |
| LN05749 5/15                 | /2013 5/15/201   | 3 5/21/2013               | KLF-3-55                    |  |
| LN05750 5/15                 | /2013 5/15/201   | 3 5/21/2013               | KLF-3-60                    |  |
| LN05751 5/15                 | /2013 5/15/201   | 3 5/21/2013               | KLF-3-65                    |  |

| Compounds                   | MDL     | PQL     | LN05747<br>Amount | LN05748<br>Amount | LN05749<br>Amount | LN05750<br>Amount | LN05751<br>Amount |
|-----------------------------|---------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|
| osin,pounus                 | (ug/kg) | (ug/kg) | (ug/kg)           | (ug/kg)           | (ug/kg)           | (ug/kg)           | (ug/kg)           |
| 2-Hexanone                  | 21      | 105.0   | nd                | nd                | nd                | nd                | nd                |
| Isopropylbenzene            | 33      | 165.0   | nd                | nd                | nd                | nd                | nd                |
| p-Isopropyltoluene          | 28      | 140.0   | nd                | nd                | nd                | nd                | nd                |
| Methyl-t-butyl ether (MTBE) | 23      | 115.0   | nd                | nd                | nd                | nd                | nd                |
| Methylene chloride          | 31      | 155.0   | nd                | nd                | nd                | nd                | nd                |
| Methyl iodide (lodomethane) | 20      | 100.0   | nd                | nd                | nd                | nd                | nd                |
| 4-Methyl-2-pentanone (MIBK) | 19      | 95.0    | nd                | nd                | nd                | nd                | nd                |
| Naphthalene                 | 30      | 150.0   | nd                | nd                | nd                | nd                | nd                |
| Propylbenzene               | 30      | 150.0   | nd                | nd                | nd                | nd                | nd                |
| Styrene (Phenylethylene)    | 33      | 165.0   | nd                | nd                | nd                | nd                | nd                |
| 1,1,1,2-Tetrachloroethane   | 23      | 115.0   | nd                | nd                | nd                | nd                | nd                |
| 1,1,2,2-Tetrachloroethane   | 40      | 200.0   | nd                | nd                | nd                | nd                | nd                |
| Tetrachloroethylene (PCE)   | 27      | 135.0   | nd                | nd                | nd                | nd                | nd                |
| Toluene                     | 25      | 125.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2,3-Trichlorobenzene      | 29      | 145.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2,4-Trichlorobenzene      | 31      | 155.0   | nd                | nd                | nd                | nd                | nd                |
| 1,1,1-Trichloroethane       | 26      | 130.0   | nd                | nd                | nd                | nd                | nd                |
| 1,1,2-Trichloroethane       | 23      | 115.0   | nd                | nd                | nd                | nd                | nd                |
| Trichloroethylene (TCE)     | 24      | 120.0   | nd                | nd                | nd                | nd                | nd                |
| Trichlorofluoromethane      | 35      | 175.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2,3-Trichloropropane      | 22      | 110.0   | nd                | nd                | nd                | nd                | nd                |
| 1,2,4-Trimethylbenzene      | 25      | 125.0   | nd                | nd                | nd                | nd                | nd                |
| 1,3,5-Trimethylbenzene      | 28      | 140.0   | nd                | nd                | nd                | nd                | nd                |
| Vinyl acetate               | 52      | 260.0   | nd                | nd                | nd                | nd                | nd                |
| Vinyl Chloride              | 36      | 180.0   | nd                | nd                | nd                | nd                | nd                |
| m & p-Xylene                | 75      | 375.0   | nd                | nd                | nd                | nd                | nd                |
| o-Xylene                    | 28      | 140.0   | nd                | nd                | nd                | nd                | nd                |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                           |             | Quality Contr | ol Data |        |        |        |
|---------------------------|-------------|---------------|---------|--------|--------|--------|
|                           | QC Limits   |               |         |        |        |        |
| <u>surrogates</u>         | % Recovery  |               |         |        |        |        |
| 0 (ug/L each)             | Lower-Upper |               |         |        |        |        |
| RR: Bromofluorobenzene    | 74 - 121    | 101.3%        | 101.0%  | 100.3% | 101.0% | 100.7% |
| JRR: Dibromofluoromethane | 80 - 120    | 98.0%         | 97.3%   | 96.7%  | 96.7%  | 97.3%  |
| URR: Toluene-d8           | 81 - 117    | 94.0%         | 93.3%   | 94.0%  | 94.0%  | 94.7%  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

| , , , , , , , , , , , , , , , , , , , , |              | Date      | Date      |                    |
|-----------------------------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No.                       | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank                                   | 5/15/2013    | 5/15/2013 | 5/20/2013 | Method Blank       |
|                                         |              |           |           |                    |
|                                         |              |           |           |                    |
|                                         |              |           |           |                    |
|                                         |              |           |           |                    |
|                                         |              |           |           |                    |
|                                         |              |           |           |                    |

|                               |       |        | Blank  |
|-------------------------------|-------|--------|--------|
| Compounds                     | MDL   | PQL    | Amount |
|                               | ug/kg | ug/kg  | ug/kg  |
|                               |       |        |        |
| Acetone                       | 32    | 160.0  | nd     |
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd     |
| Benzene                       | 26    | 130.0  | nd     |
| Bromobenzene                  | 26    | 130.0  | nd     |
| Bromochloromethane            | 24    | 120.0  | nd     |
| Bromodichloromethane          | 22    | 110.0  | nd     |
| Bromoform                     | 23    | 115.0  | nd     |
| Bromomethane                  | 20    | 100.0  | nd     |
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd     |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd     |
| Butylbenzene                  | 29    | 145.0  | nd     |
| sec-Butylbenzene              | 27    | 135.0  | nd     |
| tert-Butylbenzene             | 29    | 145.0  | nd     |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd     |
| Carbon disulfide              | 116   | 580.0  | nd     |
| Carbon Tetrachloride          | 32    | 160.0  | nd     |
| Chlorobenzene                 | 28    | 140.0  | nd     |
| Chloroethane                  | 42    | 210.0  | nd     |
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd     |
| Chloroform                    | 30    | 150.0  | nd     |
| Chloromethane                 | 70    | 350.0  | nd     |
| 2-Chlorotoluene               | 27    | 135.0  | nd     |
| 4-Chlorotoluene               | 28    | 140.0  | nd     |
| Dibromochloromethane          | 25    | 125.0  | nd     |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd     |
| 1,2-Dibromoethane             | 23    | 115.0  | nd     |
| Dibromomethane                | 33    | 165.0  | nd     |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd     |
| Dichlorodifluoromethane       | 37    | 185.0  | nd     |
| 1,1-Dichloroethane            | 29    | 145.0  | nd     |
| 1,2-Dichloroethane            | 22    | 110.0  | nd     |
| 1,1-Dichloroethene            | 28    | 140.0  | nd     |
| cis-1,2-Dichloroethene        | 26    | 130.0  | nd     |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd     |
| 1,2-Dichloropropane           | 22    | 110.0  | nd     |
| 1,3-Dichloropropane           | 21    | 105.0  | nd     |
| 2,2-Dichloropropane           | 38    | 190.0  | nd     |
| 1,1-Dichloropropene           | 27    | 135.0  | nd     |
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd     |
| trans-1,3-Dichloropropene     | 29    | 145.0  | nd     |
| Diisopropyl ether (DIPE)      | 26    | 130.0  | nd     |
| Ethylbenzene                  | 30    | 150.0  | nd     |
|                               |       |        |        |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

| Chemistry Log No.                         | Date Sampled                           | Date<br>Received | Date<br>Analyzed  | Sample Description                    |                                       |
|-------------------------------------------|----------------------------------------|------------------|-------------------|---------------------------------------|---------------------------------------|
| Blank                                     | 5/15/2013                              | 5/15/2013        | 5/20/2013         | Method Blank                          | <del>".</del>                         |
| · · · · · · · ·                           |                                        |                  |                   |                                       | · · · · · · · · · · · · · · · · · · · |
|                                           |                                        |                  |                   |                                       |                                       |
|                                           |                                        |                  |                   |                                       |                                       |
|                                           |                                        |                  |                   |                                       |                                       |
|                                           |                                        |                  |                   |                                       |                                       |
|                                           |                                        |                  |                   | · · · · · · · · · · · · · · · · · · · |                                       |
|                                           |                                        |                  | Blank             |                                       |                                       |
| Compounds                                 | MDL                                    | PQL              | Amount            |                                       |                                       |
| ompounds                                  | ug/kg                                  | ug/kg            | ug/kg             |                                       |                                       |
|                                           | agring                                 | ug/kg            | agring            |                                       |                                       |
| lexachlorobutadiene                       | 44                                     | 220.0            | nd                |                                       |                                       |
| -Hexanone                                 | 21                                     | 105.0            | nd                |                                       |                                       |
| sopropylbenzene                           | 33                                     | 165.0            | nd                |                                       |                                       |
| -Isopropyltoluene                         | 28                                     | 140.0            | nd                |                                       |                                       |
| Methyl-t-butyl ether (MTBE)               | 23                                     | 115.0            | nd                |                                       |                                       |
| flethylene chloride                       | 31                                     | 155.0            | nd                |                                       |                                       |
| odomethane                                | 20                                     | 100.0            | nd                |                                       |                                       |
| Methyl isobutyl ketone (MIBK)             | 19                                     | 95.0             | nd                |                                       |                                       |
| laphthalene                               | 30                                     | 150.0            | nd                |                                       |                                       |
| ropylbenzene                              | 30                                     | 150.0            | nd                |                                       |                                       |
| Styrene                                   | 33                                     | 165.0            | nd                |                                       |                                       |
| ,1,1,2-Tetrachloroethane                  | 23                                     | 115.0            | nd                |                                       |                                       |
| ,1,2,2-Tetrachloroethane                  | 40                                     | 200.0            | nd                |                                       |                                       |
| etrachloroethylene                        | 27                                     | 135.0            | nd                |                                       |                                       |
| oluene                                    | 25                                     | 125.0            | nd                |                                       |                                       |
| ,2,3-Trichlorobenzene                     | 29                                     | 145.0            | nd                |                                       |                                       |
| ,2,4-Trichlorobenzene                     | 31                                     | 155.0            | nd                |                                       |                                       |
| ,1,1-Trichloroethane                      | 26<br>22                               | 130.0            | nd                |                                       |                                       |
| ,1,2-Trichloroethane                      | 23                                     | 115.0            | nd                |                                       |                                       |
| richloroethylene<br>richlorofluoromethane | 24<br>35                               | 120.0<br>175.0   | nd<br>nd          |                                       |                                       |
| ,2,3-Trichloropropane                     | 22                                     | 175.0            | nd                |                                       |                                       |
| ,2,4-Trimethylbenzene                     | 25                                     | 125.0            | nd                |                                       |                                       |
| ,3,5-Trimethylbenzene                     | 28                                     | 140.0            | nd                |                                       |                                       |
| inyl acetate                              | 52                                     | 260.0            | nd                |                                       |                                       |
| /inyl Chloride (Chloroethene)             | 36                                     | 180.0            | nd                |                                       |                                       |
| n & p-Xylene                              | 75                                     | 375.0            | nd                |                                       |                                       |
| -Xylene                                   | 28                                     | 140.0            | nd                |                                       |                                       |
| IDL - Method Detection Limit              |                                        |                  | J - Concentration | n above MDL below PQL                 | <del>.,,</del>                        |
| QL - Practical Quantitation Limi          | it (5xMDL)                             |                  |                   | ed; below detection limit             |                                       |
|                                           |                                        | ·····            | Quality Control   | <u>Data</u>                           | <del></del>                           |
| Surrogates<br>0 (ug/L each)               | QC Limits<br>% Recovery<br>Lower-Upper |                  |                   |                                       |                                       |

100.3%

99.0%

94.3%

Comment:

Analyst: Bryan Tiu

SURR: Toluene-d8

SURR: Bromofluorobenzene

SURR: Dibromofluoromethane

74 - 121

80 - 120

81 - 117

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED:

5/20/13

ANALYTICAL METHOD:

**USEPA 8260** 

BATCH #: LN05740 LN/LN05740 LN05741 LN05742 LN05743 LN05744 LN05745 LN05746 LN05747 LN05748 LN05749 LN05750 LN057

LAB SAMPLE I.D.:

LN05740

UNIT:

Γ: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD   | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|-------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 31.5 | 105  | 30.0                   | 32.3 | 108  | 2.8 % | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 29.1 | 97.0 | 30.0                   | 30.6 | 102  | 5.0 % | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 30.2 | 101  | 30.0                   | 31.0 | 103  | 2.0 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 30.4 | 101  | 30.0                   | 31.2 | 104  | 2.9 % | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.4 | 118  | 30.0                   | 36.7 | 122  | 3.3 % | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/20/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LAB LCS I.D.: UNIT:

ug/kg

Q8087

LOT NUMBER: DATE OF SOURCE:

|                      | LCS RESULT | TRUE VALUE |            |                |
|----------------------|------------|------------|------------|----------------|
| ANALYTE              | ug/kg      | ug/kg      | % RECOVERY | Advisory Range |
| ,1,2-Trichloroethane | 32.2       | 30         | 107.3      | 70 - 130       |
| ,2-Dichloroethane    | 29.8       | 30         | 99.3       | 70 - 130       |
| ,4-Dichlorobenzene   | 31.6       | 30         | 105.3      | 70 - 130       |
| Benzene              | 26.6       | 30         | 88.7       | 70 - 130       |
| Bromoform            | 31.9       | 30         | 106.3      | 70 - 130       |
| Carbon Tetrachloride | 23.6       | 30         | 78.7       | 70 - 130       |
| etrachloroethylene   | 27.5       | 30         | 91.7       | 70 - 130       |
| Frichloroethylene    | 27.7       | 30         | 92.3       | 70 - 130       |
|                      |            |            |            |                |
|                      |            |            |            |                |
|                      |            |            |            |                |
|                      |            |            |            | <u> </u>       |
|                      |            |            |            |                |
|                      |            |            |            |                |
|                      |            |            |            |                |
|                      | <u> </u>   |            |            |                |
|                      |            |            |            | <u> </u>       |
|                      |            |            |            |                |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05796           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-5            |
| LN05797           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-10           |
| LN05798           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-15           |
| LN05799           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-20           |
| LN05800           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-25           |
| LN05801           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-30           |
| LN05802           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-35           |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05796<br>Amount<br>ug/kg | LN05797<br>Amount<br>ug/kg | LN05798<br>Amount<br>ug/kg | LN05799<br>Amount<br>ug/kg | LN05800<br>Amount<br>ug/kg | LN05801<br>Amount<br>ug/kg | LN05802<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Acetone                       | 32           | 160.0        | nd                         | nd                         | nd                         | nd                         | nď                         | nd                         | nd                         |
| tert-Amyl methyl ether (TAME) | 23           | 115.0        | nd                         |
| Benzene                       | 26           | 130.0        | nd                         |
| Bromobenzene                  | 26           | 130.0        | nd                         |
| Bromochloromethane            | 24           | 120.0        | nd                         |
| Bromodichloromethane          | 22           | 110.0        | nd                         |
| Bromoform                     | 23           | 115.0        | nd                         |
| Bromomethane                  | 20           | 100.0        | nd                         |
| Methyl ethyl ketone (MEK)     | 26           | 130.0        | nd                         |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0       | nd                         |
| Butylbenzene                  | 29           | 145.0        | nd                         |
| sec-Butylbenzene              | 27           | 135.0        | nd                         |
| tert-Butylbenzene             | 29           | 145.0        | лd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0        | nd                         |
| Carbon disulfide              | 116          | 580.0        | nd                         |
| Carbon Tetrachloride          | 32           | 160.0        | nd                         |
| Chlorobenzene                 | 28           | 140.0        | nd                         |
| Chloroethane                  | 42           | 210.0        | nd                         |
| 2-Chloroethyl vinyl ether     | 23           | 115.0        | nd                         |
| Chloroform                    | 30           | 150.0        | nd                         |
| Chloromethane                 | 70           | 350.0        | nd                         |
| 2-Chlorotoluene               | 27           | 135.0        | nd                         |
| 4-Chlorotoluene               | 28           | 140.0        | nd                         |
| Dibromochloromethane          | 25           | 125.0        | nd                         |
| 1,2-Dibromo-3-chloropropane   | 31           | 155.0        | nd                         |
| 1,2-Dibromoethane             | 23           | 115.0        | nd                         |
| Dibromomethane                | 33           | 165.0        | nd                         |
| 1,2-Dichlorobenzene           | 27           | 135.0        | nd                         |
| 1,3-Dichlorobenzene           | 27           | 135.0        | nd                         |
| 1,4-Dichlorobenzene           | 33           | 165.0        | nd                         |
| Dichlorodifluoromethane       | 37           | 185.0        | nd                         |
| 1,1-Dichloroethane            | 29           | 145.0        | nd                         |
| 1,2-Dichloroethane            | 22           | 110.0        | nd                         |
| 1,1-Dichloroethene            | 28           | 140.0        | nd                         |
| cis-1,2-Dichloroethene        | 26           | 130.0        | nd                         |
| trans-1,2-Dichloroethene      | 32           | 160.0        | nd                         |
| 1,2-Dichloropropane           | 22           | 110.0        | nd                         |
| 1,3-Dichloropropane           | 21           | 105.0        | nd                         |
| 2,2-Dichloropropane           | 38           | 190.0        | nd                         |
| 1,1-Dichloropropene           | 27           | 135.0        | nd                         |
| cis-1,3-Dichloropropene       | 26           | 130.0        | nd                         |
| trans-1,3-Dichloropropene     | 29           | 145.0        | nd                         |
| Diisopropyl ether (DIPE)      | 26           | 130.0        | nd                         |
| Ethylbenzene                  | 30           | 150.0        | nd                         |
| Hexachlorobutadiene           | 44           | 220.0        | nd                         |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05796           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-5            |
| LN05797           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-10           |
| LN05798           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-15           |
| LN05799           | 5/16/2013    | 5/17/2013 | 5/22/2013 | KLF-5-20           |
| LN05800           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-25           |
| LN05801           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-30           |
| LN05802           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-35           |

| Compounds                     | MDL   | PQL   | LN05796<br>Amount | LN05797<br>Amount | LN05798<br>Amount | LN05799<br>Amount | LN05800<br>Amount | LN05801<br>Amount | LN05802<br>Amount |
|-------------------------------|-------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                               | ug/kg | ug/kg | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             |
| 2-Hexanone                    | 21    | 105.0 | nd                |
| Isopropylbenzene              | 33    | 165.0 | nd                |
| p-Isopropyltoluene            | 28    | 140.0 | nd                |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd                |
| Methylene chloride            | 31    | 155.0 | nd                |
| lodomethane                   | 20    | 100.0 | nd                |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd                |
| Naphthalene                   | 30    | 150.0 | nd                |
| Propylbenzene                 | 30    | 150.0 | nď                | nd                | nd                | nd                | nd                | nd                | nd                |
| Styrene                       | 33    | 165.0 | nd                |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd                |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd                |
| Tetrachloroethylene           | 27    | 135.0 | nd                |
| Toluene                       | 25    | 125.0 | nd                |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd                |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd                |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd                |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd                |
| Trichloroethylene             | 24    | 120.0 | nd                |
| Trichlorofluoromethane        | 35    | 175.0 | nd                |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd                |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd                |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd                |
| Vinyl acetate                 | 52    | 260.0 | nd                | nď                | nd                | nd                | nd                | nd                | nd                |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd                |
| m & p-Xylene                  | 75    | 375.0 | nd                |
| o-Xylene                      | 28    | 140.0 | nd                |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL)

nd - Not Detected; below detection limit

|                                     |                                        | Quality Cont | rol Data |        |       |       |       |       |
|-------------------------------------|----------------------------------------|--------------|----------|--------|-------|-------|-------|-------|
| <u>Surrogates</u><br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |              |          |        |       |       |       |       |
| SURR: Bromofluorobenzene            | 74 - 121                               | 100.7%       | 100.0%   | 99.3%  | 96.3% | 98.7% | 98.3% | 98.3% |
| SURR: Dibromofluoromethane          | 80 - 120                               | 98.7%        | 98.3%    | 100.3% | 99.0% | 98.0% | 97.7% | 98.0% |
| SURR: Toluene-d8                    | 81 - 117                               | 95.3%        | 95.0%    | 93.3%  | 93.7% | 94.3% | 93.7% | 93.7% |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics
EPA SW-846 Method 8260
Page 1 of 2
NG STATION Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

| Compounds         | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05803<br>Amount<br>(ug/kg) | LN05804<br>Amount<br>(ug/kg) | LN05805<br>Amount<br>(ug/kg) | LN05806<br>Amount<br>(ug/kg) | LN05807<br>Amount<br>(ug/kg) | LN05808<br>Amount<br>(ug/kg) | LN05809<br>Amount<br>(ug/kg) |
|-------------------|----------------|----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| LN05809           | 5/16/2013      | 5/17/2013      | 5/23/2013                    |                              | KLF-5-70                     |                              |                              |                              |                              |
| LN05808           | 5/16/2013      | 5/17/2013      | 5/23/2013                    |                              | KLF-5-65                     |                              |                              | <u>-</u>                     |                              |
| LN05807           | 5/16/2013      | 5/17/2013      | 5/23/2013                    |                              | KLF-5-60                     |                              |                              |                              |                              |
| LN05806           | 5/16/2013      | 5/17/2013      | 5/23/2013                    |                              | KLF-5-55                     |                              |                              |                              |                              |
| LN05805           | 5/16/2013      | 5/17/2013      | 5/23/2013                    |                              | KLF-5-50                     |                              |                              |                              |                              |
| LN05804           | 5/16/2013      | 5/17/2013      | 5/23/2013                    |                              | KLF-5-45                     |                              |                              |                              |                              |
| LN05803           | 5/16/2013      | 5/17/2013      | 5/23/2013                    |                              | KLF-5-40                     |                              |                              |                              | <del>-</del>                 |
| Chemistry Log No. | Date Sampled   |                | Analyzed                     |                              |                              | Sample De                    | scription                    |                              |                              |
| <br>              | ·              | Date           | Date                         |                              |                              |                              |                              |                              |                              |

| Compounds                     | MDL     | PQL     | Amount  |
|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                               | (ug/kg) |
| Acetone                       | 32      | 160.0   | nd      | nď      | nd      | nd      | nd      | nd      | nd      |
| tert-Amyl methyl ether (TAME) | 23      | 115.0   | nd      |
| Benzene                       | 26      | 130.0   | nd      |
| Bromobenzene                  | 26      | 130.0   | nd      |
| Bromochloromethane            | 24      | 120.0   | nd      | nd      | nd      | nd      | nď      | nd      | nd      |
| Bromodichloromethane          | 22      | 110.0   | nd      |
| Bromoform                     | 23      | 115.0   | nd      |
| Bromomethane                  | 20      | 100.0   | nd      |
| 2-Butanone (MEK)              | 26      | 130.0   | nd      |
| tert-Butyl alcohol (TBA)      | 373     | 1865.0  | nd      |
| n-Butylbenzene                | 29      | 145.0   | nd      |
| sec-Butylbenzene              | 27      | 135.0   | nd      |
| tert-Butylbenzene             | 29      | 145.0   | nd      |
| tert-Butyl ethyl ether (ETBE) | 20      | 100.0   | nd      |
| Carbon disulfide              | 116     | 580.0   | nd      |
| Carbon Tetrachloride          | 32      | 160.0   | nd      |
| Chlorobenzene                 | 28      | 140.0   | nd      |
| Chloroethane                  | 42      | 210.0   | nd      |
| 2-Chloroethyl vinyl ether     | 23      | 115.0   | nd      |
| Chloroform                    | 30      | 150.0   | nd      |
| Chloromethane                 | 70      | 350.0   | nd      |
| 2-Chlorotoluene               | 27      | 135.0   | nd      |
| 4-Chlorotoluene               | 28      | 140.0   | nd      | nd      | nd      | nd      | nd      | nď      | nd      |
| Dibromochloromethane          | 25      | 125.0   | nd      |
| 1,2-Dibromo-3-chloropropane   | 31      | 155.0   | nd      |
| 1,2-Dibromoethane (EDB)       | 23      | 115.0   | nd      |
| Dibromomethane                | 33      | 165.0   | nd      |
| 1,2-Dichlorobenzene           | 27      | 135.0   | nd      |
| 1,3-Dichlorobenzene           | 27      | 135.0   | nd      | nd      | nd      | nd      | nd      | nd      | nď      |
| 1,4-Dichlorobenzene           | 33      | 165.0   | nd      |
| Dichlorodifluoromethane       | 37      | 185.0   | nd      |
| 1,1-Dichloroethane            | 29      | 145.0   | nd      |
| 1,2-Dichloroethane            | 22      | 110.0   | nd      |
| 1,1-Dichloroethene            | 28      | 140.0   | nd      | nd      | nd      | nd      | nď      | nd      | nd      |
| cis-1,2-Dichloroethene        | 26      | 130.0   | nd      |
| trans-1,2-Dichloroethene      | 32      | 160.0   | nd      |
| 1,2-Dichloropropane           | 22      | 110.0   | nd      |
| 1,3-Dichloropropane           | 21      | 105.0   | nd      |
| 2,2-Dichloropropane           | 38      | 190.0   | nd      |
| 1,1-Dichloropropene           | 27      | 135.0   | nd      |
| cis-1,3-Dichloropropene       | 26      | 130.0   | nd      |
| trans-1,3-Dichloropropene     | 29      | 145.0   | nd      |
| Diisopropyl ether (DIPE)      | 26      | 130.0   | nd      |
| Ethylbenzene                  | 30      | 150.0   | nd      |
| Hexachlorobutadiene           | 44      | 220.0   | nd      |
|                               |         |         |         |         |         |         |         |         | 0 52.5  |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05803           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-40           |
| LN05804           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-45           |
| LN05805           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-50           |
| LN05806           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-55           |
| LN05807           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-60           |
| LN05808           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-65           |
| LN05809           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-5-70           |

| Compounds                   | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05803<br>Amount<br>(ug/kg) | LN05804<br>Amount<br>(ug/kg) | LN05805<br>Amount<br>(ug/kg) | LN05806<br>Amount<br>(ug/kg) | LN05807<br>Amount<br>(ug/kg) | LN05808<br>Amount<br>(ug/kg) | LN05809<br>Amount<br>(ug/kg) |
|-----------------------------|----------------|----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 2-Hexanone                  | 21             | 105.0          | nd                           |
| Isopropylbenzene            | 33             | 165.0          | nd                           |
| p-Isopropyltoluene          | 28             | 140.0          | nd                           |
| Methyl-t-butyl ether (MTBE) | 23             | 115.0          | nd                           | nd                           | nd                           | nd                           | nd                           | nd                           | nď                           |
| Methylene chloride          | 31             | 155.0          | nd                           |
| Methyl iodide (lodomethane) | 20             | 100.0          | nd                           |
| 4-Methyl-2-pentanone (MIBK) | 19             | 95.0           | nd                           |
| Naphthalene                 | 30             | 150.0          | nd                           |
| Propylbenzene               | 30             | 150.0          | nd                           |
| Styrene (Phenylethylene)    | 33             | 165.0          | nd                           |
| 1,1,1,2-Tetrachloroethane   | 23             | 115.0          | nd                           |
| 1,1,2,2-Tetrachloroethane   | 40             | 200.0          | nd                           |
| Tetrachloroethylene (PCE)   | 27             | 135.0          | nd                           |
| Toluene                     | 25             | 125.0          | nd                           |
| 1,2,3-Trichlorobenzene      | 29             | 145.0          | nd                           |
| 1,2,4-Trichlorobenzene      | 31             | 155.0          | nd                           |
| 1,1,1-Trichloroethane       | 26             | 130.0          | nd                           |
| 1,1,2-Trichloroethane       | 23             | 115.0          | nd                           |
| Trichloroethylene (TCE)     | 24             | 120.0          | nd                           |
| Trichlorofluoromethane      | 35             | 175.0          | nd                           |
| 1,2,3-Trichloropropane      | 22             | 110.0          | nd                           |
| 1,2,4-Trimethylbenzene      | 25             | 125.0          | nd                           |
| 1,3,5-Trimethylbenzene      | 28             | 140.0          | nd                           |
| Vinyl acetate               | 52             | 260.0          | nd                           |
| Vinyl Chloride              | 36             | 180.0          | nd                           |
| m & p-Xylene                | 75             | 375.0          | nd                           |
| o-Xylene                    | 28             | 140.0          | nd                           |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                                     |                                        | Quality Contro | ol Data |        |       |       |       |        |
|-------------------------------------|----------------------------------------|----------------|---------|--------|-------|-------|-------|--------|
| <u>Surrogates</u><br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |                |         |        |       |       |       |        |
| SURR: Bromofluorobenzene            | 74 - 121                               | 99.7%          | 99.3%   | 98.7%  | 96.3% | 99.0% | 96.0% | 100.0% |
| SURR: Dibromofluoromethane          | 80 - 120                               | 99.0%          | 98.3%   | 97.7%  | 96.7% | 97.3% | 97.7% | 97.3%  |
| SURR: Toluene-d8                    | 81 - 117                               | 94.0%          | 93.3%   | 92.0%  | 93.0% | 94.0% | 95.0% | 87.0%  |
| Comment:                            |                                        |                |         | ······ |       |       |       | -      |

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/16/2013    | 5/17/2013 | 5/22/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           | -                  |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

|                               |       |        | Blank  |
|-------------------------------|-------|--------|--------|
| Compounds                     | MDL   | PQL    | Amount |
|                               | ug/kg | ug/kg  | ug/kg  |
|                               |       |        |        |
| Acetone                       | 32    | 160.0  | nd     |
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd     |
| Benzene                       | 26    | 130.0  | nd     |
| Bromobenzene                  | 26    | 130.0  | nd     |
| Bromochloromethane            | 24    | 120.0  | nd     |
| Bromodichloromethane          | 22    | 110.0  | nd     |
| Bromoform                     | 23    | 115.0  | nd     |
| Bromomethane                  | 20    | 100.0  | nd     |
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd     |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd     |
| Butylbenzene                  | 29    | 145.0  | nd     |
| sec-Butylbenzene              | 27    | 135.0  | nd     |
| tert-Butylbenzene             | 29    | 145.0  | nd     |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd     |
| Carbon disulfide              | 116   | 580.0  | nd     |
| Carbon Tetrachloride          | 32    | 160.0  | nd     |
| Chlorobenzene                 | 28    | 140.0  | nd     |
| Chloroethane                  | 42    | 210.0  | nď     |
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd     |
| Chloroform                    | 30    | 150.0  | nd     |
| Chloromethane                 | 70    | 350.0  | nd     |
| 2-Chlorotoluene               | 27    | 135.0  | nd     |
| 4-Chlorotoluene               | 28    | 140.0  | nd     |
| Dibromochloromethane          | 25    | 125.0  | nd     |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd     |
| 1,2-Dibromoethane             | 23    | 115.0  | nd     |
| Dibromomethane                | 33    | 165.0  | nd     |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd     |
| Dichlorodifluoromethane       | 37    | 185.0  | nd     |
| 1,1-Dichloroethane            | 29    | 145.0  | nd     |
| 1,2-Dichloroethane            | 22    | 110.0  | nd     |
| 1,1-Dichloroethene            | 28    | 140.0  | nd     |
| cis-1,2-Dichloroethene        | 26    | 130.0  | nd     |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd     |
| 1,2-Dichloropropane           | 22    | 110.0  | nd     |
| 1,3-Dichloropropane           | 21    | 105.0  | nd     |
| 2,2-Dichloropropane           | 38    | 190.0  | nd     |
| 1,1-Dichloropropene           | 27    | 135.0  | nd     |
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd     |
| trans-1,3-Dichloropropene     | 29    | 145.0  | nd     |
| Diisopropyl ether (DIPE)      | 26    | 130.0  | nd     |
| Ethylbenzene                  | 30    | 150.0  | nd     |
| ÷                             |       |        |        |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

| Chemistry Log No.                     | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|---------------------------------------|--------------|------------------|------------------|--------------------|
| Blank                                 | 5/16/2013    | 5/17/2013        | 5/22/2013        | Method Blank       |
|                                       |              |                  |                  |                    |
| <del>-</del>                          |              |                  |                  |                    |
|                                       |              |                  |                  |                    |
|                                       |              |                  |                  |                    |
| · · · · · · · · · · · · · · · · · · · |              |                  |                  |                    |
|                                       |              |                  |                  |                    |

|                               |       |       | Blank  |
|-------------------------------|-------|-------|--------|
| Compounds                     | MDL   | PQL   | Amount |
|                               | ug/kg | ug/kg | ug/kg  |
| Hexachlorobutadiene           | 44    | 220.0 | nd     |
| 2-Hexanone                    | 21    | 105.0 | nd     |
| Isopropylbenzene              | 33    | 165.0 | nd     |
| p-Isopropyltoluene            | 28    | 140.0 | nd     |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd     |
| Methylene chloride            | 31    | 155.0 | nd     |
| lodomethane                   | 20    | 100.0 | nd     |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd     |
| Naphthalene                   | 30    | 150.0 | nd     |
| Propylbenzene                 | 30    | 150.0 | nd     |
| Styrene                       | 33    | 165.0 | nd     |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd     |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd     |
| Tetrachloroethylene           | 27    | 135.0 | nd     |
| Toluene                       | 25    | 125.0 | nd     |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd     |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd     |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd     |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nď     |
| Trichloroethylene             | 24    | 120.0 | nd     |
| Trichlorofluoromethane        | 35    | 175.0 | nd     |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd     |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd     |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd     |
| Vinyl acetate                 | 52    | 260.0 | nd     |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd     |
| m & p-Xylene                  | 75    | 375.0 | nd     |
| o-Xylene                      | 28    | 140.0 | nd     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |             | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
|                            | QC Limits   |                      |  |
| <u>Surrogates</u>          | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper |                      |  |
| URR: Bromofluorobenzene    | 74 - 121    | 100.3%               |  |
| SURR: Dibromofluoromethane | 80 - 120    | 100.0%               |  |
| SURR: Toluene-d8           | 81 - 117    | 94.0%                |  |

Comment:

Analyst: Bryan Tiu

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/22/13

ANALYTICAL METHOD:

**USEPA 8260** 

BATCH #: LN05796 LN LN05796 LN05797 LN05798 LN05799 LN05800 LN05801 LN05802 LN05803 LN05804 LN05805 LN05806 LN058

LAB SAMPLE I.D.: LN05797 UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD   | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|-----|------------------------|------|------|-------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 30.7 | 102 | 30.0                   | 32.1 | 107  | 4.8 % | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 30.1 | 100 | 30.0                   | 31.7 | 106  | 5.8 % | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 31.1 | 104 | 30.0                   | 32.5 | 108  | 3.8 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 31.0 | 103 | 30.0                   | 32.4 | 108  | 4.7 % | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 34.0 | 113 | 30.0                   | 35.7 | 119  | 5.2 % | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/22/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LAB LCS I.D.: UNIT:

Q8087 ug/kg

LOT NUMBER:

DATE OF SOURCE:

| LCS RESULT | TRUE VALUE                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ug/kg      | ug/kg                                              | % RECOVERY                                                                                                                                                                                              | Advisory Range                                                                                                                                                                                                                                                                                                            |
| 32.3       | 30                                                 | 107.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 30.5       | 30                                                 | 101.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 31.1       | 30                                                 | 103.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 27.4       | 30                                                 | 91.3                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 35         | 30                                                 | 116.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 24.2       | 30                                                 | 80.7                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 29.4       | 30                                                 | 98.0                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 28.7       | 30                                                 | 95.7                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                    |                                                                                                                                                                                                         | <u>"</u>                                                                                                                                                                                                                                                                                                                  |
|            |                                                    |                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                         |
|            | 32.3<br>30.5<br>31.1<br>27.4<br>35<br>24.2<br>29.4 | ug/kg         ug/kg           32.3         30           30.5         30           31.1         30           27.4         30           35         30           24.2         30           29.4         30 | ug/kg         ug/kg         % RECOVERY           32.3         30         107.7           30.5         30         101.7           31.1         30         103.7           27.4         30         91.3           35         30         116.7           24.2         30         80.7           29.4         30         98.0 |

Analyst: B. Tiu

Reviewed by: R. Gentallen/2/13

120029

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   | ·            | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05810           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-5            |
| LN05811           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-10           |
| LN05812           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-15           |
| LN05813           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-20           |
| LN05814           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-25           |
| LN05815           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-30           |
| LN05816           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-35           |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05810<br>Amount<br>ug/kg | LN05811<br>Amount<br>ug/kg | LN05812<br>Amount<br>ug/kg | LN05813<br>Amount<br>ug/kg | LN05814<br>Amount<br>ug/kg | LN05815<br>Amount<br>ug/kg | LN05816<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Acetone                       | 32           | 160.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         | nd                         |
| tert-Amyl methyl ether (TAME) | 23           | 115.0        | nd                         |
| Benzene                       | 26           | 130.0        | nd                         |
| Bromobenzene                  | 26           | 130.0        | nd                         |
| Bromochloromethane            | 24           | 120.0        | nd                         |
| Bromodichloromethane          | 22           | 110.0        | nd                         |
| Bromoform                     | 23           | 115.0        | nd                         |
| Bromomethane                  | 20           | 100.0        | nd                         |
| Methyl ethyl ketone (MEK)     | 26           | 130.0        | nd                         |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0       | nd                         |
| Butylbenzene                  | 29           | 145.0        | nd                         |
| sec-Butylbenzene              | 27           | 135.0        | nd                         |
| tert-Butylbenzene             | 29           | 145.0        | nd                         |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0        | nd                         |
| Carbon disulfide              | 116          | 580.0        | nd                         |
| Carbon Tetrachloride          | 32           | 160.0        | nd                         |
| Chlorobenzene                 | 28           | 140.0        | nd                         |
| Chloroethane                  | 42           | 210.0        | nd                         |
| 2-Chloroethyl vinyl ether     | 23           | 115.0        | nd                         |
| Chloroform                    | 30           | 150.0        | nd                         |
| Chloromethane                 | 70           | 350.0        | nd                         |
| 2-Chlorotoluene               | 27           | 135.0        | nd                         |
| 4-Chlorotoluene               | 28           | 140.0        | nd                         |
| Dibromochloromethane          | 25           | 125.0        | nd                         |
| 1,2-Dibromo-3-chloropropane   | 31           | 155.0        | nd                         |
| 1,2-Dibromoethane             | 23           | 115.0        | nd                         |
| Dibromomethane                | 33           | 165.0        | nd                         |
| 1,2-Dichlorobenzene           | 27           | 135.0        | nd                         |
| 1,3-Dichlorobenzene           | 27           | 135.0        | nd                         |
| 1,4-Dichlorobenzene           | 33           | 165.0        | nd                         |
| Dichlorodifluoromethane       | 37           | 185.0        | nd                         |
| 1,1-Dichloroethane            | 29           | 145.0        | nd                         |
| 1,2-Dichloroethane            | 22           | 110.0        | nd                         |
| 1,1-Dichloroethene            | 28           | 140.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | ηd                         |
| cis-1,2-Dichloroethene        | 26           | 130.0        | nd                         |
| trans-1,2-Dichloroethene      | 32           | 160.0        | nd                         |
| 1,2-Dichloropropane           | 22           | 110.0        | nd                         |
| 1,3-Dichloropropane           | 21           | 105.0        | nd                         |
| 2,2-Dichloropropane           | 38           | 190.0        | nd                         |
| 1,1-Dichloropropene           | 27           | 135.0        | nd                         |
| cis-1,3-Dichloropropene       | 26           | 130.0        | nd                         |
| trans-1,3-Dichloropropene     | 29           | 145.0        | nd                         |
| Diisopropyl ether (DIPE)      | 26           | 130.0        | nd                         |
| Ethylbenzene                  | 30           | 150.0        | nd                         |
| Hexachlorobutadiene           | 44           | 220.0        | nd                         |
|                               |              |              |                            |                            |                            |                            |                            |                            |                            |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

|                   |              | Date      | Date      | <u> </u>           |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05810           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-5            |
| LN05811           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-10           |
| LN05812           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-15           |
| LN05813           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-20           |
| LN05814           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-25           |
| LN05815           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-30           |
| LN05816           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-35           |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05810<br>Amount<br>ug/kg | LN05811<br>Amount<br>ug/kg | LN05812<br>Amount<br>ug/kg | LN05813<br>Amount<br>ug/kg | LN05814<br>Amount<br>ug/kg | LN05815<br>Amount<br>ug/kg | LN05816<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 2-Hexanone                    | 21           | 105.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         |
| Isopropylbenzene              | 33           | 165.0        | nd                         |
| p-Isopropyltoluene            | 28           | 140.0        | nd                         |
| Methyl-t-butyl ether (MT8E)   | 23           | 115.0        | nd                         |
| Methylene chloride            | 31           | 155.0        | nd                         |
| Iodomethane                   | 20           | 100.0        | nd                         | nd                         | nď                         | nd                         | nd                         | nd                         | nd                         |
| Methyl isobutyl ketone (MIBK) | 19           | 95.0         | nd                         |
| Naphthalene                   | 30           | 150.0        | nd                         |
| Propylbenzene                 | 30           | 150.0        | nd                         |
| Styrene                       | 33           | 165.0        | nd                         |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                         |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                         |
| Tetrachloroethylene           | 27           | 135.0        | nđ                         | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Toluene                       | <b>2</b> 5   | 125.0        | nd                         |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                         |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd                         |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd                         |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                         |
| Trichloroethylene             | 24           | 120.0        | nd                         |
| Trichlorofluoromethane        | 35           | 175.0        | nd                         |
| 1,2,3-Trichloropropane        | 22           | 110.0        | nd                         |
| 1,2,4-Trimethylbenzene        | 25           | 125.0        | nd                         |
| 1,3,5-Trimethylbenzene        | 28           | 140.0        | nd                         | nđ                         | nd                         | nd                         | nd                         | กd                         | nd                         |
| Vinyl acetate                 | 52           | 260.0        | nd                         |
| Vinyl Chloride (Chloroethene) | 36           | 180.0        | nd                         |
| m & p-Xylene                  | 75           | 375.0        | nd                         |
| o-Xylene                      | 28           | 140.0        | nd                         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |                      | Quality Contr | ol Data |        |       |       |       |       |
|----------------------------|----------------------|---------------|---------|--------|-------|-------|-------|-------|
| Surrogates                 | QC Limits % Recovery |               |         |        |       |       |       |       |
| 30 (ug/L each)             | Lower-Upper          |               |         |        |       |       |       |       |
| SURR: Bromofluorobenzene   | 74 - 121             | 98.0%         | 105.3%  | 111.0% | 83.0% | 96.7% | 97.0% | 84.0% |
| SURR: Dibromofluoromethane | 80 - 120             | 98.0%         | 99.3%   | 100.0% | 96.7% | 97.0% | 98.7% | 99.3% |
| SURR: Toluene-d8           | 81 - 117             | 89.0%         | 83.7%   | 85.0%  | 83.7% | 88.3% | 86.7% | 98.7% |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics
EPA SW-846 Method 8260
Page 1 of 2
ING STATION Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled |           |           | Sample Description |
| LN05817           | 5/16/2013    | 5/17/2013 | 5/23/2013 | KLF-4-40           |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   | <u> </u>     |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05817<br>Amount<br>(ug/kg) |
|-------------------------------|----------------|----------------|------------------------------|
| Acetone                       | 32             | 160.0          | nd                           |
| tert-Amyl methyl ether (TAME) | 23             | 115.0          | nd                           |
| Benzene                       | 26             | 130.0          | nd                           |
| Bromobenzene                  | 26             | 130.0          | nd                           |
| Bromochloromethane            | 24             | 120.0          | nď                           |
| Bromodichloromethane          | 22             | 110.0          | nď                           |
| Bromoform                     | 23             | 115.0          | nd                           |
| Bromomethane                  | 20             | 100.0          | nd                           |
| 2-Butanone (MEK)              | 26             | 130.0          | nd                           |
| tert-Butyl alcohol (TBA)      | 373            | 1865.0         | nd                           |
| n-Butylbenzene                | 29             | 145.0          | nd                           |
| sec-Butylbenzene              | 27             | 135.0          | nd                           |
| tert-Butylbenzene             | 29             | 145.0          | nd                           |
| tert-Butyl ethyl ether (ETBE) | 20             | 100.0          | nd                           |
| Carbon disulfide              | 116            | 580.0          | nd                           |
| Carbon Tetrachloride          | 32             | 160.0          | nd                           |
| Chlorobenzene                 | 28             | 140.0          | nd                           |
| Chloroethane                  | 42             | 210.0          | nd                           |
| 2-Chloroethyl vinyl ether     | 23             | 115.0          | nd                           |
| Chloroform                    | 30             | 150.0          | nd                           |
| Chloromethane                 | 70             | 350.0          | nd                           |
| 2-Chlorotoluene               | 27             | 135.0          | nd                           |
| 4-Chlorotoluene               | 28             | 140.0          | nd                           |
| Dibromochloromethane          | 25             | 125.0          | nd                           |
| 1,2-Dibromo-3-chloropropane   | 31             | 155.0          | nd                           |
| 1,2-Dibromoethane (EDB)       | 23             | 115.0          | nd                           |
| Dibromomethane                | 33             | 165.0          | nd                           |
| 1,2-Dichlorobenzene           | 27             | 135.0          | nd                           |
| 1,3-Dichlorobenzene           | 27             | 135.0          | nd                           |
| 1,4-Dichlorobenzene           | 33             | 165.0          | nd                           |
| Dichlorodifluoromethane       | 37             | 185.0          | nd                           |
| 1,1-Dichloroethane            | 29             | 145.0          | nd                           |
| 1,2-Dichloroethane            | 22             | 110.0          | nd                           |
| 1,1-Dichloroethene            | 28             | 140.0          | nd                           |
| cis-1,2-Dichloroethene        | 26             | 130.0          | nd                           |
| trans-1,2-Dichloroethene      | 32             | 160.0          | nd                           |
| 1,2-Dichloropropane           | 22             | 110.0          | nd                           |
| 1,3-Dichloropropane           | 21             | 105.0          | nd                           |
| 2,2-Dichloropropane           | 38             | 190.0          | nd                           |
| 1,1-Dichloropropene           | 27             | 135.0          | nd                           |
| cis-1,3-Dichloropropene       | 26             | 130.0          | nd                           |
| trans-1,3-Dichloropropene     | 29             | 145.0          | nd                           |
| Diisopropyl ether (DIPE)      | 26             | 130.0          | nd                           |
| Ethylbenzene                  | 30             | 150.0          | nd                           |
| Hexachlorobutadiene           | 44             | 220.0          | nd                           |
|                               |                |                |                              |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN05817           |              |                  | 5/23/2013        | ·                  |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   | <u> </u>     |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |

|                             |         |         | LN05817    |
|-----------------------------|---------|---------|------------|
| Compounds                   | MDL     | PQL     | Amount     |
|                             | (ug/kg) | (ug/kg) | (ug/kg)    |
| 2-Hexanone                  | 21      | 105.0   | nd         |
| Isopropylbenzene            | 33      | 165.0   | nd         |
| p-Isopropyltoluene          | 28      | 140.0   | nd         |
| Methyl-t-butyl ether (MTBE) | 23      | 115.0   | nd         |
| Methylene chloride          | 31      | 155.0   | n <b>d</b> |
| Methyl iodide (lodomethane) | 20      | 100.0   | nd         |
| 4-Methyl-2-pentanone (MIBK) | 19      | 95.0    | nd         |
| Naphthalene                 | 30      | 150.0   | nd         |
| Propylbenzene               | 30      | 150.0   | nd         |
| Styrene (Phenylethylene)    | 33      | 165.0   | nd         |
| 1,1,1,2-Tetrachloroethane   | 23      | 115.0   | nd         |
| 1,1,2,2-Tetrachloroethane   | 40      | 200.0   | nd         |
| Tetrachloroethylene (PCE)   | 27      | 135.0   | nd         |
| Toluene                     | 25      | 125.0   | nd         |
| 1,2,3-Trichlorobenzene      | 29      | 145.0   | nd         |
| 1,2,4-Trichlorobenzene      | 31      | 155.0   | nd         |
| 1,1,1-Trichloroethane       | 26      | 130.0   | nd         |
| 1,1,2-Trichloroethane       | 23      | 115.0   | nd         |
| Trichloroethylene (TCE)     | 24      | 120.0   | nd         |
| Trichlorofluoromethane      | 35      | 175.0   | nd         |
| 1,2,3-Trichloropropane      | 22      | 110.0   | nd         |
| 1,2,4-Trimethylbenzene      | 25      | 125.0   | nd         |
| 1,3,5-Trimethylbenzene      | 28      | 140.0   | nd         |
| Vinyl acetate               | 52      | 260.0   | nd         |
| Vinyl Chloride              | 36      | 180.0   | nd         |
| m & p-Xylene                | 75      | 375.0   | nd         |
| o-Xylene                    | 28      | 140.0   | nd         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |             | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
|                            | QC Limits   |                      |  |
| <u>Surrogates</u>          | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper |                      |  |
| SURR: Bromofluorobenzene   | 74 - 121    | 109.7%               |  |
| SURR: Dibromofluoromethane | 80 - 120    | 99.7%                |  |
| SURR: Toluene-d8           | 81 - 117    | 85.3%                |  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/16/2013    | 5/17/2013 | 5/23/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | Blank<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|--------------------------|
| Acetone                       | 32           | 160.0        | nd                       |
| tert-Amyl methyl ether (TAME) | 23           | 115.0        | nd                       |
| Benzene                       | 26           | 130.0        | nd                       |
| Bromobenzene                  | 26           | 130.0        | nd                       |
| Bromochloromethane            | 24           | 120.0        | nd                       |
| Bromodichloromethane          | 22           | 110.0        | nd                       |
| Bromoform                     | 23           | 115.0        | nd                       |
| Bromomethane                  | 20           | 100.0        | nd                       |
| Methyl ethyl ketone (MEK)     | 26           | 130.0        | nd                       |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0       | nd                       |
| Butylbenzene                  | 29           | 145.0        | nd                       |
| sec-Butylbenzene              | 27           | 135.0        | nd                       |
| tert-Butylbenzene             | 29           | 145.0        | nd                       |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0        | nd                       |
| Carbon disulfide              | 116          | 580.0        | nd                       |
| Carbon Tetrachloride          | 32           | 160.0        | nd                       |
| Chlorobenzene                 | 28           | 140.0        | nd                       |
| Chloroethane                  | 42           | 210.0        | nd                       |
| 2-Chloroethyl vinyl ether     | 23           | 115.0        | nd                       |
| Chloroform                    | 30           | 150.0        | nd                       |
| Chloromethane                 | 70           | 350.0        | nd                       |
| 2-Chlorotoluene               | 27           | 135.0        | nd                       |
| 4-Chlorotoluene               | 28           | 140.0        | nd                       |
| Dibromochloromethane          | 25           | 125.0        | nd                       |
| 1,2-Dibromo-3-chloropropane   | 31           | 155.0        | nd                       |
| 1,2-Dibromoethane             | 23           | 115.0        | nd                       |
| Dibromomethane                | 33           | 165.0        | nd                       |
| 1,2-Dichlorobenzene           | 27           | 135.0        | nd                       |
| 1,3-Dichlorobenzene           | 27           | 135.0        | nď                       |
| 1,4-Dichlorobenzene           | 33           | 165.0        | nđ                       |
| Dichlorodifluoromethane       | 37           | 185.0        | nd                       |
| 1,1-Dichloroethane            | 29           | 145.0        | nd                       |
| 1,2-Dichloroethane            | 22           | 110.0        | nd                       |
| 1,1-Dichloroethene            | 28           | 140.0        | nd                       |
| cis-1,2-Dichloroethene        | 26           | 130.0        | nd                       |
| trans-1,2-Dichloroethene      | 32           | 160.0        | nd                       |
| 1,2-Dichloropropane           | 22           | 110.0        | nd                       |
| 1,3-Dichloropropane           | 21           | 105.0        | nd                       |
| 2,2-Dichloropropane           | 38           | 190.0        | nd                       |
| 1,1-Dichloropropene           | 27           | 135.0        | nd                       |
| cis-1,3-Dichloropropene       | 26           | 130.0        | nd                       |
| trans-1,3-Dichloropropene     | 29           | 145.0        | nd                       |
| Diisopropyl ether (DIPE)      | 26           | 130.0        | nd                       |
| Ethylbenzene                  | 30           | 150.0        | nd                       |
|                               |              |              |                          |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                                  |              | Date                                  | Date              |                          |
|----------------------------------|--------------|---------------------------------------|-------------------|--------------------------|
| Chemistry Log No.                | Date Sampled | Received                              | Analyzed          | Sample Description       |
| Blank                            | 5/16/2013    | 5/17/2013                             | 5/23/2013         | Method Blank             |
|                                  |              |                                       |                   |                          |
|                                  |              |                                       |                   |                          |
|                                  |              |                                       |                   | , <u> </u>               |
|                                  |              |                                       |                   |                          |
|                                  |              |                                       |                   |                          |
| ····                             |              |                                       | <u> </u>          |                          |
|                                  |              |                                       | Diant             |                          |
| Compounds                        | MDL          | PQL                                   | Blank<br>Amount   |                          |
| Sompounds                        | ug/kg        | ug/kg                                 | ug/kg             |                          |
|                                  | ug/kg        | ug/kg                                 | ug/kg             |                          |
| Hexachlorobutadiene              | 44           | 220.0                                 | nd                |                          |
| 2-Hexanone                       | 21           | 105.0                                 | nd                |                          |
| sopropylbenzene                  | 33           | 165.0                                 | nd                |                          |
| o-Isopropyltoluene               | 28           | 140.0                                 | nd                |                          |
| Methyl-t-butyl ether (MTBE)      | 23           | 115.0                                 | nd                |                          |
| Methylene chloride               | 31           | 155.0                                 | nd                |                          |
| odomethane                       | 20           | 100.0                                 | nd                |                          |
| Methyl isobutyl ketone (MIBK)    | 19           | 95.0                                  | nd                |                          |
| Naphthalene                      | 30           | 150.0                                 | nd                |                          |
| Propylbenzene                    | 30           | 150.0                                 | nd                |                          |
| Styrene                          | 33           | 165.0                                 | nd                |                          |
| 1,1,1,2-Tetrachloroethane        | 23           | 115.0                                 | nd                |                          |
| 1,1,2,2-Tetrachloroethane        | 40           | 200.0                                 | nd                |                          |
| Tetrachloroethylene              | 27           | 135.0                                 | nd                |                          |
| Toluene                          | 25           | 125.0                                 | nd                |                          |
| 1,2,3-Trichlorobenzene           | 29           | 145.0                                 | nd                |                          |
| 1,2,4-Trichlorobenzene           | 31           | 155.0                                 | nd                |                          |
| 1,1,1-Trichloroethane            | 26           | 130.0                                 | nd                |                          |
| 1,1,2-Trichloroethane            | 23           | 115.0                                 | nd                |                          |
| Frichloroethylene                | 24           | 120.0                                 | nd                |                          |
| Frichlorofluoromethane           | 35           | 175.0                                 | nd                |                          |
| 1,2,3-Trichloropropane           | 22           | 110.0                                 | nd                |                          |
| 1,2,4-Trimethylbenzene           | 25           | 125.0                                 | nd                |                          |
| 1,3,5-Trimethylbenzene           | 28           | 140.0                                 | nd                |                          |
| Vinyl acetate                    | 52           | 260.0                                 | nd                |                          |
| Vinyl Chloride (Chloroethene)    | 36           | 180.0                                 | nd                |                          |
| n & p-Xylene                     | 75           | 375.0                                 | nd                |                          |
| o-Xylene                         | 28           | 140.0                                 | nd                |                          |
| MDL - Method Detection Limit     |              | · · · · · · · · · · · · · · · · · · · | J - Concentration | above MDL below PQL      |
| PQL - Practical Quantitation Lim | it (5xMDL)   |                                       |                   | d; below detection limit |
|                                  |              |                                       |                   |                          |
|                                  |              |                                       | Quality Control [ | <u>Pata</u>              |
| _                                | QC Limits    |                                       |                   |                          |
| <u>Surrogates</u>                | % Recovery   |                                       |                   |                          |
| 30 (ug/L each)                   | Lower-Upper  |                                       |                   |                          |

100.3%

100.0%

94.0%

Comment:

Analyst: Bryan Tiu

SURR: Toluene-d8

SURR: Bromofluorobenzene

SURR: Dibromofluoromethane

74 - 121

80 - 120

81 - 117

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/23/13 ANALYTICAL METHOD: USEPA 8260

BATCH #: LN05810 LN LN05810 LN05811 LN05812 LN05813 LN05814 LN05815 LN05816 LN05817

LAB SAMPLE I.D.: LN05810 UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 32.6 | 109  | 30.0                   | 32.3 | 108  | 0.92 % | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 30.6 | 102  | 30.0                   | 30.0 | 100  | 2.0 %  | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 32.4 | 108  | 30.0                   | 34.4 | 115  | 6.3 %  | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 28.1 | 93.7 | 30.0                   | 28.7 | 95.7 | 2.1 %  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.1 | 117  | 30.0                   | 33.7 | 112  | 4.4 %  | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED: 5/23/13 ANALYTICAL METHOD: USEPA 8260

SUPPLY SOURCE: LAB LCS I.D.: Q8087

LOT NUMBER: UNIT: ug/kg

DATE OF SOURCE:

|                       | LCS RESULT | TRUE VALUE |            |                |
|-----------------------|------------|------------|------------|----------------|
| ANALYTE               | ug/kg      | ug/kg      | % RECOVERY | Advisory Range |
| 1,1,2-Trichloroethane | 32.9       | 30         | 109.7      | 70 - 130       |
| 1,2-Dichloroethane    | 29.8       | 30         | 99.3       | 70 - 130       |
| 1,4-Dichlorobenzene   | 29.8       | 30         | 99.3       | 70 - 130       |
| Benzene               | 26.2       | 30         | 87.3       | 70 - 130       |
| Bromoform             | 30.5       | 30         | 101.7      | 70 - 130       |
| Carbon Tetrachloride  | 21.4       | 30         | 71.3       | 70 - 130       |
| Tetrachloroethylene   | 26.6       | 30         | 88.7       | 70 - 130       |
| Trichloroethylene     | 28.2       | 30         | 94.0       | 70 - 130       |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            | <u></u>        |

Report of GC/MS Analysis for Purgeable Volatile Organics
EPA SW-846 Method 8260
Page 1 of 2
ING STATION Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                                       |              | Date      | Date      |                    |
|---------------------------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No.                     | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05818                               | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-45           |
| LN05819                               | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-50           |
| LN05820                               | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-55           |
| LN05821                               | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-60           |
| LN05822                               | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-65           |
| LN05823                               | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-70           |
| · · · · · · · · · · · · · · · · · · · |              |           |           |                    |

|                                       |       |        | LN05818 | LN05819 | LN05820 | LN05821 | LN05822 | LN05823 |  |
|---------------------------------------|-------|--------|---------|---------|---------|---------|---------|---------|--|
| Compounds                             | MDL   | PQL    | Amount  | Amount  | Amount  | Amount  | Amount  | Amount  |  |
|                                       | ug/kg | ug/kg  | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   |  |
|                                       |       |        |         |         |         |         |         |         |  |
| Acetone                               | 32    | 160.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| tert-Amyl methyl ether (TAME)         | 23    | 115.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Benzene                               | 26    | 130.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Bromobenzene                          | 26    | 130.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Bromochloromethane                    | 24    | 120.0  | nd      | nd      | nd      | nđ      | nd      | nd      |  |
| Bromodichloromethane                  | 22    | 110.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Bromoform                             | 23    | 115.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Bromomethane                          | 20    | 100.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Methyl ethyl ketone (MEK)             | 26    | 130.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| tert-Butyl alcohol (TBA)              | 373   | 1865.0 | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Butylbenzene                          | 29    | 145.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| sec-Butylbenzene                      | 27    | 135.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| tert-Butylbenzene                     | 29    | 145.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| tert-Butyl ethyl ether (ETBE)         | 20    | 100.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Carbon disulfide                      | 116   | 580.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Carbon Tetrachloride                  | 32    | 160.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Chlorobenzene                         | 28    | 140.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Chloroethane                          | 42    | 210.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 2-Chloroethyl vinyl ether             | 23    | 115.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Chloroform                            | 30    | 150.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Chloromethane                         | 70    | 350.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 2-Chlorotoluene                       | 27    | 135.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 4-Chlorotoluene                       | 28    | 140.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Dibromochloromethane                  | 25    | 125.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,2-Dibromo-3-chloropropane           | 31    | 155.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,2-Dibromoethane                     | 23    | 115.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Dibromomethane                        | 33    | 165.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,2-Dichlorobenzene                   | 27    | 135.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,3-Dichlorobenzene                   | 27    | 135.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,4-Dichlorobenzene                   | 33    | 165.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Dichlorodifluoromethane               | 37    | 185.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,1-Dichloroethane                    | 29    | 145.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,2-Dichloroethane                    | 22    | 110.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,1-Dichloroethene                    | 28    | 140.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| cis-1,2-Dichloroethene                | 26    | 130.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| trans-1,2-Dichloroethene              | 32    | 160.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,2-Dichloropropane                   | 22    | 110.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,3-Dichloropropane                   | 21    | 105.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 2,2-Dichloropropane                   | 38    | 190.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| 1,1-Dichloropropene                   | 27    | 135.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| cis-1,3-Dichloropropene               | 26    | 130.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| trans-1,3-Dichloropropene             | 29    | 145.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Diisopropyl ether (DIPE)              | 26    | 130.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Ethylbenzene                          | 30    | 150.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| Hexachlorobutadiene                   | 44    | 220.0  | nd      | nd      | nd      | nd      | nd      | nd      |  |
| · · · · · · · · · · · · · · · · · · · |       |        |         |         |         |         |         | _       |  |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05818           | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-45           |
| LN05819           | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-50           |
| LN05820           | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-55           |
| LN05821           | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-60           |
| LN05822           | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-65           |
| LN05823           | 5/16/2013    | 5/17/2013 | 5/24/2013 | KLF-4-70           |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05818<br>Amount<br>ug/kg | LN05819<br>Amount<br>ug/kg | LN05820<br>Amount<br>ug/kg | LN05821<br>Amount<br>ug/kg | LN05822<br>Amount<br>ug/kg | LN05823<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 2-Hexanone                    | 21           | 105.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nđ                         |
| Isopropylbenzene              | 33           | 165.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| p-Isopropyltoluene            | 28           | 140.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Methyl-t-butyl ether (MTBE)   | 23           | 115.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Methylene chloride            | 31           | 155.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| lodomethane                   | 20           | 100.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Methyl isobutyl ketone (MIBK) | 19           | 95.0         | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Naphthalene                   | 30           | 150.0        | nd                         | nď                         | nd                         | nd                         | nd                         | nd                         |
| Propylbenzene                 | 30           | 150.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Styrene                       | 33           | 165.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Tetrachloroethylene           | 27           | 135.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Toluene                       | 25           | 125.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Trichloroethylene             | 24           | 120.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Trichlorofluoromethane        | 35           | 175.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,2,3-Trichloropropane        | 22           | 110.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,2,4-Trimethylbenzene        | 25           | 125.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| 1,3,5-Trimethylbenzene        | 28           | 140.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Vinyl acetate                 | 52           | 260.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Vinyl Chloride (Chloroethene) | 36           | 180.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| m & p-Xylene                  | 75           | 375.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| o-Xylene                      | 28           | 140.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |             | Quality Contr | ol Data |        |        |        |        |  |
|----------------------------|-------------|---------------|---------|--------|--------|--------|--------|--|
|                            | QC Limits   |               |         |        |        |        |        |  |
| Surrogates                 | % Recovery  |               |         |        |        |        |        |  |
| 30 (ug/L each)             | Lower-Upper |               |         |        |        |        |        |  |
| SURR: Bromofluorobenzene   | 74 - 121    | 106.0%        | 105.3%  | 104.3% | 104.7% | 103.3% | 103.7% |  |
| SURR: Dibromofluoromethane | 80 - 120    | 96.0%         | 93.7%   | 94.3%  | 94.7%  | 92.7%  | 93.7%  |  |
| SURR: Toluene-d8           | 81 - 117    | 96.3%         | 96.0%   | 96.0%  | 95.3%  | 95.0%  | 93.7%  |  |

Comment.

Analyst: Bryan Tiu Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

| Chemistry Log No.                     | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |   |
|---------------------------------------|--------------|------------------|------------------|--------------------|---|
| Blank                                 | 5/16/2013    | 5/17/2013        | 5/24/2013        | Method Blank       |   |
|                                       |              |                  |                  |                    |   |
| <del></del>                           |              |                  |                  |                    |   |
|                                       |              |                  |                  |                    |   |
| · · · · · · · · · · · · · · · · · · · |              |                  |                  |                    |   |
|                                       |              |                  |                  |                    | _ |

| Compounds                               | MDL   | PQL    | Blank<br>Amount |
|-----------------------------------------|-------|--------|-----------------|
| 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | ug/kg | ug/kg  | ug/kg           |
|                                         |       |        |                 |
| Acetone                                 | 32    | 160.0  | nd              |
| tert-Amyl methyl ether (TAME)           | 23    | 115.0  | nd              |
| Benzene                                 | 26    | 130.0  | nd              |
| Bromobenzene                            | 26    | 130.0  | nd              |
| Bromochloromethane                      | 24    | 120.0  | nd              |
| Bromodichloromethane                    | 22    | 110.0  | nd              |
| Bromoform                               | 23    | 115.0  | nd              |
| Bromomethane                            | 20    | 100.0  | nd              |
| Methyl ethyl ketone (MEK)               | 26    | 130.0  | nd              |
| tert-Butyl alcohol (TBA)                | 373   | 1865.0 | nd              |
| Butylbenzene                            | 29    | 145.0  | nd              |
| sec-Butylbenzene                        | 27    | 135.0  | nd              |
| tert-Butylbenzene                       | 29    | 145.0  | nd              |
| tert-Butyl ethyl ether (ETBE)           | 20    | 100.0  | nd              |
| Carbon disulfide                        | 116   | 580.0  | nd              |
| Carbon Tetrachloride                    | 32    | 160.0  | nd              |
| Chlorobenzene                           | 28    | 140.0  | nd              |
| Chloroethane                            | 42    | 210.0  | nd              |
| 2-Chloroethyl vinyl ether               | 23    | 115.0  | nd              |
| Chloroform                              | 30    | 150.0  | nd              |
| Chloromethane                           | 70    | 350.0  | nd              |
| 2-Chlorotoluene                         | 27    | 135.0  | nd              |
| 4-Chlorotoluene                         | 28    | 140.0  | nd              |
| Dibromochloromethane                    | 25    | 125.0  | nd              |
| 1,2-Dibromo-3-chloropropane             | 31    | 155.0  | nd              |
| 1,2-Dibromoethane                       | 23    | 115.0  | nd              |
| Dibromomethane                          | 33    | 165.0  | nd              |
| 1,2-Dichlorobenzene                     | 27    | 135.0  | nd              |
| 1,3-Dichlorobenzene                     | 27    | 135.0  | nd              |
| 1,4-Dichlorobenzene                     | 33    | 165.0  | nd              |
| Dichlorodifluoromethane                 | 37    | 185.0  | nd              |
| 1,1-Dichloroethane                      | 29    | 145.0  | nd              |
| 1,2-Dichloroethane                      | 22    | 110.0  | nd              |
| 1,1-Dichloroethene                      | 28    | 140.0  | nd              |
| cis-1,2-Dichloroethene                  | 26    | 130.0  | nd              |
| trans-1,2-Dichloroethene                | 32    | 160.0  | nd              |
| 1,2-Dichloropropane                     | 22    | 110.0  | nd              |
| 1,3-Dichloropropane                     | 21    | 105.0  | nd              |
| 2,2-Dichloropropane                     | 38    | 190.0  | nd              |
| 1,1-Dichloropropene                     | 27    | 135.0  | nd              |
| cis-1,3-Dichloropropene                 | 26    | 130.0  | nd              |
| trans-1,3-Dichloropropene               | 29    | 145.0  | nd              |
| Diisopropyl ether (DIPE)                | 26    | 130.0  | nd              |
| Ethylbenzene                            | 30    | 150.0  | nd              |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                   |              | Date      | Date      | · · · · · · · · · · · · · · · · · · · |
|-------------------|--------------|-----------|-----------|---------------------------------------|
| Chemistry Log No. | Date Sampled |           |           | Sample Description                    |
| Blank             | 5/16/2013    | 5/17/2013 | 5/24/2013 | Method Blank                          |
|                   |              |           |           |                                       |
|                   |              |           |           |                                       |
|                   |              |           |           |                                       |
|                   |              |           |           |                                       |
|                   |              |           |           |                                       |
|                   |              |           |           |                                       |
|                   | <u> </u>     |           | <u> </u>  |                                       |

|                               |       |       | Blank  |
|-------------------------------|-------|-------|--------|
| Compounds                     | MDL   | PQL   | Amount |
|                               | ug/kg | ug/kg | ug/kg  |
| Hexachlorobutadiene           | 44    | 220.0 | nd     |
| 2-Hexanone                    | 21    | 105.0 | nd     |
| Isopropylbenzene              | 33    | 165.0 | nd     |
| p-Isopropyltoluene            | 28    | 140.0 | nd     |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd     |
| Methylene chloride            | 31    | 155.0 | nd     |
| Iodomethane                   | 20    | 100.0 | nd     |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd     |
| Naphthalene                   | 30    | 150.0 | nď     |
| Propylbenzene                 | 30    | 150.0 | nđ     |
| Styrene                       | 33    | 165.0 | nd     |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd     |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd     |
| Tetrachloroethylene           | 27    | 135.0 | nd     |
| Toluene                       | 25    | 125.0 | nd     |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd     |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd     |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd     |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd     |
| Trichloroethylene             | 24    | 120.0 | nd     |
| Trichlorofluoromethane        | 35    | 175.0 | nd     |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd     |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd     |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd     |
| Vinyl acetate                 | 52    | 260.0 | nd     |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd     |
| m & p-Xylene                  | 75    | 375.0 | nd     |
| o-Xylene                      | 28    | 140.0 | nd     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                           |             | Quality Control Data |  |
|---------------------------|-------------|----------------------|--|
|                           | QC Limits   |                      |  |
| urrogates                 | % Recovery  |                      |  |
| 0 (ug/L each)             | Lower-Upper |                      |  |
| RR: Bromofluorobenzene    | 74 - 121    | 104.7%               |  |
| JRR: Dibromofluoromethane | 80 - 120    | 97.3%                |  |
| URR: Toluene-d8           | 81 - 117    | 96.3%                |  |

Comment:

Analyst: Bryan Tiu

## Quality Assurance Report

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/24/13 ANALYTICAL METHOD: **USEPA 8260** 

BATCH #: LN05818 LN LN05818 LN05819 LN05820 LN05821 LN05822 LN05823

LAB SAMPLE I.D.: LN05818 UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 23.5 | 78.3 | 30.0                   | 24.4 | 81.3 | 3.8 %  | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 29.4 | 98.0 | 30.0                   | 30.1 | 100  | 2.0 %  | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 31.9 | 106  | 30.0                   | 32.3 | 108  | 1.9 %  | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 31.6 | 105  | 30.0                   | 32.0 | 107  | 1.9 %  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 34.7 | 116  | 30.0                   | 35.0 | 117  | 0.86 % | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/24/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LAB LCS I.D.: UNIT:

Q8087 ug/kg

LOT NUMBER: DATE OF SOURCE:

|                       |            |             | 1            | · · · · · · · · · · · · · · · · · · ·            |
|-----------------------|------------|-------------|--------------|--------------------------------------------------|
|                       |            |             |              |                                                  |
|                       | LCS RESULT | TRUE VALUE  |              |                                                  |
| ANALYTE               | ug/kg      | ug/kg       | % RECOVERY   | Advisory Range                                   |
| 1,1,2-Trichloroethane | 33.5       | 30          | 111.7        | 70 - 130                                         |
| 1,2-Dichloroethane    | 32         | 30          | 106.7        | 70 - 130                                         |
| 1,4-Dichlorobenzene   | 32.2       | 30          | 107.3        | 70 - 130                                         |
| Benzene               | 28.5       | 30          | 95.0         | 70 - 130                                         |
| Bromoform             | 34.7       | 30          | 115.7        | 70 - 130                                         |
| Carbon Tetrachloride  | 27.9       | 30          | 93.0         | 70 - 130                                         |
| Tetrachloroethylene   | 32.3       | 30          | 107.7        | 70 - 130                                         |
| Trichloroethylene     | 31.2       | 30          | 104.0        | 70 - 130                                         |
|                       |            | <u> </u>    |              |                                                  |
|                       |            |             |              |                                                  |
|                       |            |             |              |                                                  |
|                       |            |             |              | · ·                                              |
|                       |            |             | - "          | <del></del>                                      |
|                       |            |             |              | <u> </u>                                         |
|                       |            |             |              | <del></del>                                      |
|                       |            |             |              | · · · · · · · · · · · · · · · · · · ·            |
|                       |            |             | 1            |                                                  |
|                       |            | <u> </u>    |              | <del>                                     </del> |
| _                     |            | <del></del> | <del> </del> |                                                  |
|                       | 1          | `           | -            | <del> </del>                                     |

Analyst: B. Tiu

Reviewed by: R. Gentallen, /19/13

020041

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                       |
|-------------------|--------------|-----------|-----------|-----------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description    |
| LN05904           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-5  |
| LN05905           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-10 |
| LN05906           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-15 |
| LN05907           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-20 |
| LN05908           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-25 |
| LN05909           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-30 |
| LN05910           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-35 |

|                               |       |        | LN05904 | LN05905 | LN05906 | LN05907 | LN05908 | LN05909 | LN05910 |
|-------------------------------|-------|--------|---------|---------|---------|---------|---------|---------|---------|
| Compounds                     | MDL   | PQL    | Amount  |
|                               | ug/kg | ug/kg  | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   |
| Acetone                       | 32    | 160.0  | nd      |
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd      |
| Benzene                       | 26    | 130.0  | nd      |
| Bromobenzene                  | 26    | 130.0  | nd      |
| Bromochloromethane            | 24    | 120.0  | nd      |
| Bromodichloromethane          | 22    | 110.0  | nd      |
| Bromoform                     | 23    | 115.0  | nd      |
| Bromomethane                  | 20    | 100.0  | nd      |
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd      |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd      |
| Butylbenzene                  | 29    | 145.0  | nd      |
| sec-Butylbenzene              | 27    | 135.0  | nd      |
| tert-Butylbenzene             | 29    | 145.0  | nd      |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd      |
| Carbon disulfide              | 116   | 580.0  | nd      |
| Carbon Tetrachloride          | 32    | 160.0  | nd      |
| Chlorobenzene                 | 28    | 140.0  | nd      |
| Chloroethane                  | 42    | 210.0  | nd      |
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd      |
| Chloroform                    | 30    | 150.0  | nd      |
| Chloromethane                 | 70    | 350.0  | nd      |
| 2-Chlorotoluene               | 27    | 135.0  | nd      |
| 4-Chlorotoluene               | 28    | 140.0  | nd      |
| Dibromochloromethane          | 25    | 125.0  | nd      |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd      |
| 1,2-Dibromoethane             | 23    | 115.0  | nd      |
| Dibromomethane                | 33    | 165.0  | nd      |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd      |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd      |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd      |
| Dichlorodifluoromethane       | 37    | 185.0  | nd      |
| 1,1-Dichloroethane            | 29    | 145.0  | nd      |
| 1,2-Dichloroethane            | 22    | 110.0  | nd      |
| 1,1-Dichloroethene            | 28    | 140.0  | nd      |
| cis-1,2-Dichloroethene        | 26    | 130.0  | nd      |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd      |
| 1,2-Dichloropropane           | 22    | 110.0  | nd      |
| 1,3-Dichloropropane           | 21    | 105.0  | nď      | nd      | nd      | nd      | nd      | nd      | nd      |
| 2,2-Dichloropropane           | 38    | 190.0  | nd      |
| 1,1-Dichloropropene           | 27    | 135.0  | nd      |
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd      |
| trans-1,3-Dichloropropene     | 29    | 145.0  | nd      |
| Diisopropyl ether (DIPE)      | 26    | 130.0  | nd      |
| Ethylbenzene                  | 30    | 150.0  | nd      |
| Hexachlorobutadiene           | 44    | 220.0  | nd      |

020042

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

|                   |              | Date      | Date      |                       |
|-------------------|--------------|-----------|-----------|-----------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description    |
| LN05904           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-5  |
| LN05905           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-10 |
| LN05906           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-15 |
| LN05907           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-20 |
| LN05908           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-25 |
| LN05909           | 5/20/2013    | 5/20/2013 | 5/24/2013 | FIGUEROA PS, KLF-7-30 |
| LN05910           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-35 |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05904<br>Amount<br>ug/kg | LN05905<br>Amount<br>ug/kg | LN05906<br>Amount<br>ug/kg | LN05907<br>Amount<br>ug/kg | LN05908<br>Amount<br>ug/kg | LN05909<br>Amount<br>ug/kg | LN05910<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 2-Hexanone                    | 21           | 105.0        | nd                         |
| Isopropylbenzene              | 33           | 165.0        | nd                         |
| p-Isopropyltoluene            | 28           | 140.0        | nd                         |
| Methyl-t-butyl ether (MTBE)   | 23           | 115.0        | nd                         |
| Methylene chloride            | 31           | 155.0        | nd                         |
| lodomethane                   | 20           | 100.0        | nd                         |
| Methyl isobutyl ketone (MIBK) | 19           | 95.0         | nd                         |
| Naphthalene                   | 30           | 150.0        | nd                         |
| Propylbenzene                 | 30           | 150.0        | nd                         |
| Styrene                       | 33           | 165.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                         |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                         |
| Tetrachloroethylene           | 27           | 135.0        | nd                         |
| Toluene                       | 25           | 125.0        | nd                         |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                         |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd                         |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd                         |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                         |
| Trichloroethylene             | 24           | 120.0        | nď                         | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         |
| Trichlorofluoromethane        | 35           | 175.0        | nd                         |
| 1,2,3-Trichloropropane        | 22           | 110.0        | nd                         |
| 1,2,4-Trimethylbenzene        | 25           | 125.0        | nd                         |
| 1,3,5-Trimethylbenzene        | 28           | 140.0        | nd                         |
| Vinyl acetate                 | 52           | 260.0        | nd                         |
| Vinyl Chloride (Chloroethene) | 36           | 180.0        | nd                         |
| m & p-Xylene                  | 75           | 375.0        | nd                         |
| o-Xylene                      | 28           | 140.0        | nd                         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                              |                                        | Quality Contr                                    | ol Data |        |        |        |        |        |
|------------------------------|----------------------------------------|--------------------------------------------------|---------|--------|--------|--------|--------|--------|
| Surrogates<br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper | <del>-                                    </del> |         |        |        |        |        |        |
| SURR: Bromofluorobenzene     | 74 - 121                               | 105.3%                                           | 104.7%  | 104.0% | 104.7% | 104.0% | 103.3% | 105.0% |
| SURR: Dibromofluoromethane   | 80 - 120                               | 93.3%                                            | 94.3%   | 94.0%  | 93.3%  | 93.7%  | 94.7%  | 93.7%  |
| SURR: Toluene-d8             | 81 - 117                               | 97.3%                                            | 96.7%   | 96.0%  | 97.3%  | 96.0%  | 95.3%  | 95.7%  |

Comment:

Analyst: Bryan Tiu

Sample Description

FIGUEROA PS, KLF-7-40

FIGUEROA PS, KLF-7-45

### **ENVIRONMENTAL LABORATORY DATA REPORT**

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

Date

Received

5/20/2013

Date Sampled

5/20/2013

5/20/2013

PROJECT: FIGUEROA PUMPING STATION

Chemistry Log No.

LN05911

LN05912

Hexachlorobutadiene

44

220.0

nd

nd

nd

nd

nd

nd

Page 1 of 2 Sample Matrix: Soil

Date

Analyzed

5/25/2013

5/20/2013 5/25/2013

| LN03312                       | 0/20/2013 | 3/20/2013 | 3/23/2013 |         |          | 1 F3, KLF-7- |          |          |          |
|-------------------------------|-----------|-----------|-----------|---------|----------|--------------|----------|----------|----------|
| LN05913                       | 5/20/2013 | 5/20/2013 | 5/25/2013 |         | FIGUEROA | PS, KLF-7-   | -50      |          |          |
| LN05914                       | 5/20/2013 | 5/20/2013 | 5/25/2013 |         | FIGUEROA | PS, KLF-7-   | -55      |          |          |
| LN05915                       | 5/20/2013 | 5/20/2013 | 5/25/2013 |         | FIGUEROA | PS, KLF-7-   | -60      |          |          |
| LN05916                       | 5/20/2013 | 5/20/2013 | 5/25/2013 |         | FIGUEROA | PS, KLF-7-   | -65      |          |          |
| LN05917                       | 5/20/2013 | 5/20/2013 | 5/25/2013 |         | FIGUEROA | PS, KLF-7-   | -70      | **       | <u> </u> |
| ****                          |           |           |           |         |          |              |          |          |          |
| _                             |           |           | LN05911   | LN05912 | LN05913  | LN05914      | LN05915  | LN05916  | LN05917  |
| Compounds                     | MDL       | PQL       | Amount    | Amount  | Amount   | Amount       | Amount   | Amount   | Amount   |
|                               | (ug/kg)   | (ug/kg)   | (ug/kg)   | (ug/kg) | (ug/kg)  | (ug/kg)      | (ug/kg)  | (ug/kg)  | (ug/kg)  |
| Acetone                       | 32        | 160.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| tert-Amyl methyl ether (TAME) | 23        | 115.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Benzene                       | 26        | 130.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Bromobenzene                  | 26        | 130.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Bromochloromethane            | 24        | 120.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Bromodichloromethane          | 22        | 110.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Bromoform                     | 23        | 115.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Bromomethane                  | 20        | 100.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 2-Butanone (MEK)              | 26        | 130.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| tert-Butyl alcohol (TBA)      | 373       | 1865.0    | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| n-Butylbenzene                | 29        | 145.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| sec-Butylbenzene              | 27        | 135.0     | nd        | nď      | nd       | nd           | nd       | nd       | nd       |
| tert-Butylbenzene             | 29        | 145.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| tert-Butyl ethyl ether (ETBE) | 20        | 100.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Carbon disulfide              | 116       | 580.0     | nd        | nd      | nd       | nd           | nd       | nd       | nď       |
| Carbon Tetrachloride          | 32        | 160.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Chlorobenzene                 | 28        | 140.0     | nd        | nd      | nd       | nd           | nd       | nd       | nď       |
| Chloroethane                  | 42        | 210.0     | nd        | nd      | nd       | nd           | nd       | nd       | nď       |
| 2-Chloroethyl vinyl ether     | 23        | 115.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Chloroform                    | 30        | 150.0     | nd        | nd      | nd       | nď           | nd       | nd       | nd       |
| Chloromethane                 | 70        | 350.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 2-Chlorotoluene               | 27        | 135.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 4-Chlorotoluene               | 28        | 140.0     | nd        | nd      | nd       | nd           | nd       | nd       | nď       |
| Dibromochloromethane          | 25        | 125.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 1,2-Dibromo-3-chloropropane   | 31        | 155.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 1,2-Dibromoethane (EDB)       | 23        | 115.0     | nd        | nd      | nd       | nd           | nd       | nd       |          |
| Dibromomethane                | 33        | 165.0     | nd        | nd      | nd       | nd           |          |          | nd       |
| 1,2-Dichlorobenzene           | 27        | 135.0     | nd        | nd      | nd       | nd           | nd<br>nd | nd       | nď       |
| 1,3-Dichlorobenzene           | 27<br>27  | 135.0     | nd        | nd      | nd       |              | nd<br>nd | nd       | nd       |
| 1,4-Dichlorobenzene           | 33        | 165.0     | nd        | nd      |          | nd<br>nd     | nd<br>nd | nd       | nd       |
| Dichlorodifluoromethane       | 33<br>37  | 185.0     |           |         | nd<br>nd |              | nd       | nd<br>nd | nd       |
| 1,1-Dichloroethane            | 29        | 145.0     | nd        | nd      | nd<br>nd | nd           | nd       | nd       | nd<br>d  |
| 1,2-Dichloroethane            |           |           | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| •                             | 22        | 110.0     | nd        | nd      | nd<br>   | nd           | nd       | nd<br>   | nd<br>!  |
| 1,1-Dichloroethene            | 28        | 140.0     | nd        | nd      | nd<br>1  | nd           | nd       | nd       | nd       |
| cis-1,2-Dichloroethene        | 26        | 130.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| trans-1,2-Dichloroethene      | 32        | 160.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 1,2-Dichloropropane           | 22        | 110.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 1,3-Dichloropropane           | 21        | 105.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| 2,2-Dichloropropane           | 38        | 190.0     | nd        | nď      | nd       | nd           | nd       | nd       | nd       |
| 1,1-Dichloropropene           | 27        | 135.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| cis-1,3-Dichloropropene       | 26        | 130.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| trans-1,3-Dichloropropene     | 29        | 145.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Diisopropyl ether (DIPE)      | 26        | 130.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |
| Ethylbenzene                  | 30        | 150.0     | nd        | nd      | nd       | nd           | nd       | nd       | nd       |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                       |
|-------------------|--------------|-----------|-----------|-----------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description    |
| LN05911           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-40 |
| LN05912           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-45 |
| LN05913           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-50 |
| LN05914           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-55 |
| LN05915           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-60 |
| LN05916           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-65 |
| LN05917           | 5/20/2013    | 5/20/2013 | 5/25/2013 | FIGUEROA PS, KLF-7-70 |

| Compounds                   | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05911<br>Amount<br>(ug/kg) | LN05912<br>Amount<br>(ug/kg) | LN05913<br>Amount<br>(ug/kg) | LN05914<br>Amount<br>(ug/kg) | LN05915<br>Amount<br>(ug/kg) | LN05916<br>Amount<br>(ug/kg) | LN05917<br>Amount<br>(ug/kg) |
|-----------------------------|----------------|----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 2-Hexanone                  | 21             | 105.0          | nd                           |
| Isopropylbenzene            | 33             | 165.0          | nd                           |
| p-Isopropyltoluene          | 28             | 140.0          | nd                           |
| Methyl-t-butyl ether (MTBE) | 23             | 115.0          | nd                           |
| Methylene chloride          | 31             | 155.0          | nd                           |
| Methyl iodide (lodomethaле) | 20             | 100.0          | nď                           | nd                           | nd                           | nd                           | nd                           | nd                           | nd                           |
| 4-Methyl-2-pentanone (MIBK) | 19             | 95.0           | nd                           |
| Naphthalene                 | 30             | 150.0          | nd                           |
| Propylbenzene               | 30             | 150.0          | nd                           |
| Styrene (Phenylethylene)    | 33             | 165.0          | nd                           | nd                           | nd                           | πd                           | nd                           | nd                           | nd                           |
| 1,1,1,2-Tetrachloroethane   | 23             | 115.0          | nd                           |
| 1,1,2,2-Tetrachloroethane   | 40             | 200.0          | nd                           |
| Tetrachloroethylene (PCE)   | 27             | 135.0          | nd                           |
| Toluene                     | 25             | 125.0          | nd                           |
| 1,2,3-Trichlorobenzene      | 29             | 145.0          | nd                           |
| 1,2,4-Trichlorobenzene      | 31             | 155.0          | nd                           |
| 1,1,1-Trichloroethane       | 26             | 130.0          | nd                           |
| 1,1,2-Trichloroethane       | 23             | 115.0          | nd                           |
| Trichloroethylene (TCE)     | 24             | 120.0          | nd                           |
| Trichlorofluoromethane      | 35             | 175.0          | nd                           |
| 1,2,3-Trichloropropane      | 22             | 110.0          | nd                           |
| 1,2,4-Trimethylbenzene      | 25             | 125.0          | nd                           |
| 1,3,5-Trimethylbenzene      | 28             | 140.0          | nd                           |
| Vinyl acetate               | 52             | 260.0          | nd                           |
| Vinyl Chloride              | 36             | 180.0          | nd                           |
| m & p-Xylene                | 75             | 375.0          | nd                           |
| o-Xylene                    | 28             | 140.0          | nd                           | nd                           | nd                           | nd                           | nď                           | nd                           | nd                           |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL)

nd - Not Detected; below detection limit

|                                     |                                        | Quality Contr | ol Data |        |        |        |        |        |
|-------------------------------------|----------------------------------------|---------------|---------|--------|--------|--------|--------|--------|
| <u>Surrogates</u><br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |               |         |        |        |        |        |        |
| SURR: Bromofluorobenzene            | 74 - 121                               | 104.7%        | 103.7%  | 104.0% | 104.7% | 104.3% | 105.0% | 106.0% |
| SURR: Dibromofluoromethane          | 80 - 120                               | 93.3%         | 93.7%   | 93.7%  | 93.3%  | 92.3%  | 95.0%  | 94.7%  |
| SURR: Toluene-d8                    | 81 - 117                               | 96.3%         | 94.7%   | 94.3%  | 94.3%  | 96.0%  | 95.3%  | 96.7%  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/20/2013    | 5/20/2013 | 5/24/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   | ·            |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

|                               |          |        | Blank  |
|-------------------------------|----------|--------|--------|
| Compounds                     | MDL      | PQL    | Amount |
|                               | ug/kg    | ug/kg  | ug/kg  |
|                               |          |        |        |
| Acetone                       | 32       | 160.0  | nd     |
| tert-Amyl methyl ether (TAME) | 23       | 115.0  | nd     |
| Benzene                       | 26       | 130.0  | nd     |
| Bromobenzene                  | 26       | 130.0  | nd     |
| Bromochloromethane            | 24       | 120.0  | nd     |
| Bromodichloromethane          | 22       | 110.0  | nd     |
| Bromoform                     | 23       | 115.0  | nd     |
| Bromomethane                  | 20       | 100.0  | nd     |
| Methyl ethyl ketone (MEK)     | 26       | 130.0  | nd     |
| tert-Butyl alcohol (TBA)      | 373      | 1865.0 | nd     |
| Butylbenzene                  | 29       | 145.0  | nd     |
| sec-Butylbenzene              | 27       | 135.0  | nd     |
| tert-Butylbenzene             | 29       | 145.0  | nd     |
| tert-Butyl ethyl ether (ETBE) | 20       | 100.0  | nd     |
| Carbon disulfide              | 116      | 580.0  | nd     |
| Carbon Tetrachloride          | 32       | 160.0  | nd     |
| Chlorobenzene                 | 28       | 140.0  | nd     |
| Chloroethane                  | 42       | 210.0  | nd     |
| 2-Chloroethyl vinyl ether     | 23       | 115.0  | nd     |
| Chloroform                    | 30       | 150.0  | nd     |
| Chloromethane                 | 70       | 350.0  | nd     |
| 2-Chlorotoluene               | 27       | 135.0  | nd     |
| 4-Chlorotoluene               | 28       | 140.0  | nd     |
| Dibromochloromethane          | 25       | 125.0  | nd     |
| 1,2-Dibromo-3-chloropropane   | 31       | 155.0  | nd     |
| 1,2-Dibromoethane             | 23       | 115.0  | nd     |
| Dibromomethane                | 33       | 165.0  | nd     |
| 1,2-Dichlorobenzene           | 27       | 135.0  | nd     |
| 1,3-Dichlorobenzene           | 27       | 135.0  | nd     |
| 1,4-Dichlorobenzene           | 33       | 165.0  | nd     |
| Dichlorodifluoromethane       | 37       | 185.0  | nd     |
| 1,1-Dichloroethane            | 29       | 145.0  | nd     |
| 1,2-Dichloroethane            | 22       | 110.0  | nd     |
| 1,1-Dichloroethene            | 28       | 140.0  | nd     |
| cis-1,2-Dichloroethene        | 26       | 130.0  | nd     |
| trans-1,2-Dichloroethene      | 32       | 160.0  | nd     |
| 1,2-Dichloropropane           | 22       | 110.0  | nd     |
| 1,3-Dichloropropane           | 21       | 105.0  | nd     |
| 2,2-Dichloropropane           | 38       | 190.0  | nd     |
| 1,1-Dichloropropene           | 27       | 135.0  | nd     |
| cis-1,3-Dichloropropene       | 26       | 130.0  | nd     |
| trans-1,3-Dichloropropene     | 20<br>29 | 145.0  |        |
| Diisopropyl ether (DIPE)      | 29<br>26 |        | nd     |
|                               |          | 130.0  | nd     |
| Ethylbenzene                  | 30       | 150.0  | nd     |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                                       |                                       | Date      | Date         |                                       |
|---------------------------------------|---------------------------------------|-----------|--------------|---------------------------------------|
| Chemistry Log No.                     | Date Sampled                          | Received  | Analyzed     | Sample Description                    |
| Blank                                 | 5/20/2013                             | 5/20/2013 | 5/24/2013    | Method Blank                          |
| · · · · · · · · · · · · · · · · · · · |                                       |           |              |                                       |
|                                       |                                       |           |              | *                                     |
|                                       |                                       |           |              | *-                                    |
|                                       |                                       |           |              |                                       |
|                                       |                                       |           |              | *_ ·· · · · · ·                       |
|                                       |                                       |           |              | · · · · · · · · · · · · · · · · · · · |
|                                       |                                       |           |              |                                       |
|                                       |                                       |           | Blank        |                                       |
| Compounds                             | MDL                                   | PQL       | Amount       |                                       |
|                                       | ug/kg                                 | ug/kg     | ug/kg        |                                       |
|                                       |                                       |           |              |                                       |
| Hexachlorobutadiene                   | 44                                    | 220.0     | nd           |                                       |
| 2-Hexanone                            | 21                                    | 105.0     | nd           |                                       |
| sopropylbenzene                       | 33                                    | 165.0     | nd           |                                       |
| o-Isopropyltoluene                    | 28                                    | 140.0     | nd           |                                       |
| Methyl-t-butyl ether (MTBE)           | 23                                    | 115.0     | nd           | •                                     |
| Methylene chloride                    | 31                                    | 155.0     | nd           |                                       |
| odomethane                            | 20                                    | 100.0     | nd           |                                       |
| Methyl isobutyl ketone (MIBK)         | 19                                    | 95.0      | nd           |                                       |
| Naphthalene                           | 30                                    | 150.0     | nd           |                                       |
| Propylbenzene                         | 30                                    | 150.0     | nd           |                                       |
| Styrene                               | 33                                    | 165.0     | nd           |                                       |
| 1,1,1,2-Tetrachloroethane             | 23                                    | 115.0     | nd           |                                       |
| 1,1,2,2-Tetrachloroethane             | 40                                    | 200.0     | nd           |                                       |
| Tetrachloroethylene                   | 27                                    | 135.0     | nd           |                                       |
| Toluene                               | 25                                    | 125.0     | nd           |                                       |
| 1,2,3-Trichlorobenzene                | 29                                    | 145.0     | nd           |                                       |
| 1,2,4-Trichlorobenzene                | 31                                    | 155.0     | nd           |                                       |
| 1,1,1-Trichloroethane                 | 26                                    | 130.0     | nd           |                                       |
| 1,1,2-Trichloroethane                 | 23                                    | 115.0     | nd           |                                       |
| Trichloroethylene                     | 24                                    | 120.0     | nd           |                                       |
| Trichlorofluoromethane                | 35                                    | 175.0     | nd           |                                       |
| 1,2,3-Trichloropropane                | 22                                    | 110.0     | nd           |                                       |
| 1,2,4-Trimethylbenzene                | 25                                    | 125.0     | nd           |                                       |
| 1,3,5-Trimethylbenzene                | 28                                    | 140.0     | nd           |                                       |
| Vinyl acetate                         | 52                                    | 260.0     | nd           |                                       |
| Vinyl Chloride (Chloroethene)         | 36                                    | 180.0     | nd           |                                       |
| m & p-Xylene                          | 75                                    | 375.0     | nd           |                                       |
| o-Xylene                              | 28                                    | 140.0     | nd           |                                       |
| MDL - Method Detection Limit          | · · · · · · · · · · · · · · · · · · · |           | J - Concentr | ation above MDL below PQL             |
| PQL - Practical Quantitation Lim      | it (5xMDL)                            |           |              | ected; below detection limit          |
|                                       |                                       |           |              |                                       |
|                                       |                                       |           | Quality Cont | rol Data                              |
|                                       | QC Limits                             |           | Quanty Coll  | TOT DUILU                             |
| <u>Surrogates</u>                     | % Recovery                            |           |              |                                       |
| 30 (ug/L each)                        | 10 Recovery  Lower-Upper              |           |              |                                       |
| SO (UGIL CACII)                       | rower-opper                           |           |              |                                       |
| SURR: Bromofluorobenzene              | 74 - 121                              |           | 104.0%       |                                       |
|                                       |                                       |           |              |                                       |

95.0%

95.7%

Comment:

Analyst: Bryan Tiu

SURR: Toluene-d8

SURR: Dibromofluoromethane

80 - 120

81 - 117

#### Quality Assurance Report

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/24/13

ANALYTICAL METHOD:

**USEPA 8260** 

BATCH #: LN05904 LN LN05904 LN05905 LN05906 LN05907 LN05908 LN05909 LN05910 LN05911 LN05912 LN05913 LN05914 LN059

LAB SAMPLE I.D.:

LN05906

UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD   | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|-------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 23.8 | 79.3 | 30.0                   | 24.5 | 81.7 | 3.0 % | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 29.5 | 98.3 | 30.0                   | 30.0 | 100  | 1.7 % | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 31.8 | 106  | 30.0                   | 32.4 | 108  | 1.9 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 32.1 | 107  | 30.0                   | 32.0 | 107  | 0.0%  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.1 | 117  | 30.0                   | 34.5 | 115  | 1.7 % | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/24/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LAB LCS I.D.:

Q8087

ug/kg

LOT NUMBER:

UNIT:

DATE OF SOURCE:

|                       |            | I                                       | 1          | <del></del>                                  |
|-----------------------|------------|-----------------------------------------|------------|----------------------------------------------|
|                       |            |                                         |            |                                              |
|                       | LCS RESULT | TRUE VALUE                              |            |                                              |
| ANALYTE               | ug/kg      | ug/kg                                   | % RECOVERY | Advisory Range                               |
| 1,1,2-Trichloroethane | 34.3       | 30                                      | 114.3      | 70 - 130                                     |
| 1,2-Dichloroethane    | 32.5       | 30                                      | 108.3      | 70 - 130                                     |
| 1,4-Dichlorobenzene   | 32         | 30                                      | 106.7      | 70 - 130                                     |
| Benzene               | 27.4       | 30                                      | 91.3       | 70 - 130                                     |
| Bromoform             | 35.2       | 30                                      | 117.3      | 70 - 130                                     |
| Carbon Tetrachloride  | 26.8       | 30                                      | 89.3       | 70 - 130                                     |
| Tetrachloroethylene   | 30.6       | 30                                      | 102.0      | 70 - 130                                     |
| Trichloroethylene     | 31.2       | 30                                      | 104.0      | 70 - 130                                     |
|                       |            | į                                       |            |                                              |
|                       |            |                                         |            |                                              |
|                       |            |                                         |            |                                              |
|                       |            |                                         |            |                                              |
|                       |            |                                         |            | ·-                                           |
|                       |            |                                         |            |                                              |
|                       |            |                                         |            |                                              |
|                       |            | *************************************** |            |                                              |
|                       |            |                                         |            |                                              |
|                       |            |                                         |            | <u>                                     </u> |
|                       |            |                                         |            | <u> </u>                                     |
|                       |            |                                         |            |                                              |
| <u> </u>              | L          | <u> </u>                                | <u> </u>   | <u> </u>                                     |

Sample Description

KLF-6-5

#### **ENVIRONMENTAL LABORATORY DATA REPORT**

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

Page 1 of 2

**PROJECT: FIGUEROA PUMPING STATION** 

Chemistry Log No.

LN05918

trans-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

cis-1,3-Dichloropropene

Diisopropyl ether (DIPE)

Hexachlorobutadiene

Ethylbenzene

trans-1,3-Dichloropropene

Sample Matrix: Soil

Date

Analyzed

Date

Received

5/20/2013 5/20/2013 5/28/2013

Date Sampled

32

22

21

38

27

26

29

26

30

44

160.0

110.0

105.0

190.0

135.0

130.0

145.0

130.0

150.0

220.0

nđ

nd

| FI402910                      | 3/20/2013 | 5/20/2013 | 3/20/2013 |         | VEL-0-0  |          |         |         |         |
|-------------------------------|-----------|-----------|-----------|---------|----------|----------|---------|---------|---------|
| LN05919                       | 5/20/2013 | 5/20/2013 | 5/28/2013 |         | KLF-6-10 |          |         |         |         |
| LN05920                       | 5/20/2013 | 5/20/2013 | 5/28/2013 |         | KLF-6-15 |          |         |         |         |
| LN05921                       | 5/20/2013 | 5/20/2013 | 5/28/2013 |         | KLF-6-20 |          |         |         |         |
| LN05922                       | 5/20/2013 | 5/20/2013 | 5/28/2013 |         | KLF-6-25 |          |         |         |         |
| LN05923                       | 5/20/2013 | 5/20/2013 | 5/28/2013 |         | KLF-6-30 |          |         |         |         |
| LN05924                       | 5/20/2013 | 5/20/2013 | 5/28/2013 |         | KLF-6-35 |          |         |         |         |
|                               |           |           |           |         |          |          |         |         |         |
|                               |           |           | LN05918   | LN05919 | LN05920  | LN05921  | LN05922 | LN05923 | LN05924 |
| Compounds                     | MDL       | PQL       | Amount    | Amount  | Amount   | Amount   | Amount  | Amount  | Amount  |
|                               | ug/kg     | ug/kg     | ug/kg     | ug/kg   | ug/kg    | ug/kg    | ug/kg   | ug/kg   | ug/kg   |
|                               |           |           |           |         |          |          |         |         |         |
| Acetone                       | 32        | 160.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| tert-Amyl methyl ether (TAME) | 23        | 115.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Benzene                       | 26        | 130.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Bromobenzene                  | 26        | 130.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Bromochloromethane            | 24        | 120.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Bromodichloromethane          | 22        | 110.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Bromoform                     | 23        | 115.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Bromomethane                  | 20        | 100.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Methyl ethyl ketone (MEK)     | 26        | 130.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| tert-Butyl alcohol (TBA)      | 373       | 1865.0    | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Butylbenzene                  | 29        | 145.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| sec-Butylbenzene              | 27        | 135.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| tert-Butylbenzene             | 29        | 145.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| tert-Butyl ethyl ether (ETBE) | 20        | 100.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Carbon disulfide              | 116       | 580.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Carbon Tetrachloride          | 32        | 160.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Chlorobenzene                 | 28        | 140.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Chloroethane                  | 42        | 210.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 2-Chloroethyl vinyl ether     | 23        | 115.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Chloroform                    | 30        | 150.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Chloromethane                 | 70        | 350.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 2-Chlorotoluene               | 27        | 135.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 4-Chlorotoluene               | 28        | 140.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Dibromochloromethane          | 25        | 125.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 1,2-Dibromo-3-chloropropane   | 31        | 155.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 1,2-Dibromoethane             | 23        | 115.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Dibromomethane                | 33        | 165.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 1,2-Dichlorobenzene           | 27        | 135.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 1,3-Dichlorobenzene           | 27        | 135.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 1,4-Dichlorobenzene           | 33        | 165.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| Dichlorodifluoromethane       | 37        | 185.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
| 1,1-Dichloroethane            | 29        | 145.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
|                               | 29<br>22  |           |           |         |          |          |         |         |         |
| 1,2-Dichloroethane            | 22<br>28  | 110.0     | nd        | nd      | nd<br>nd | nd       | nd      | nd      | nd      |
| 1,1-Dichloroethene            |           | 140.0     | nd<br>ad  | nd      | nd       | nd<br>ad | nd      | nd      | nd      |
| cis-1,2-Dichloroethene        | 26        | 130.0     | nd        | nd      | nd       | nd       | nd      | nd      | nd      |
|                               |           |           |           |         |          |          |         |         |         |

nd

nd

nd

nd

nd

nd

nd

nd

nd

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05918           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-5            |
| LN05919           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-10           |
| LN05920           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-15           |
| LN05921           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-20           |
| LN05922           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-25           |
| LN05923           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-30           |
| LN05924           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-35           |

| Oceanovado                    | MDI   | DOL   | LN05918 | LN05919 | LN05920 | LN05921 | LN05922 | LN05923 | LN05924 |
|-------------------------------|-------|-------|---------|---------|---------|---------|---------|---------|---------|
| Compounds                     | MDL   | PQL   | Amount  |
|                               | ug/kg | ug/kg | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   |
| 2-Hexanone                    | 21    | 105.0 | nd      |
| Isopropylbenzene              | 33    | 165.0 | nd      |
| p-Isopropyitoluene            | 28    | 140.0 | nd      |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd      |
| Methylene chloride            | 31    | 155.0 | nd      |
| lodomethane                   | 20    | 100.0 | nd      | nd      | nd      | nd      | nd      | πd      | nd      |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd      |
| Naphthalene                   | 30    | 150.0 | nd      | nd      | nd      | nd      | nd      | лd      | nd      |
| Propylbenzene                 | 30    | 150.0 | nd      |
| Styrene                       | 33    | 165.0 | nd      |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd      |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd      |
| Tetrachloroethylene           | 27    | 135.0 | nd      |
| Toluene                       | 25    | 125.0 | nd      |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd      |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd      |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd      |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd      |
| Trichloroethylene             | 24    | 120.0 | nd      |
| Trichlorofluoromethane        | 35    | 175.0 | nd      |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd      |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd      |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd      |
| Vinyl acetate                 | 52    | 260.0 | nd      |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd      |
| m & p-Xylene                  | 75    | 375.0 | nd      |
| o-Xylene                      | 28    | 140.0 | nd      |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL)

nd - Not Detected; below detection limit

|                              |                                        | Quality Conti | ol Data   |        |        |        |        |        |
|------------------------------|----------------------------------------|---------------|-----------|--------|--------|--------|--------|--------|
| Surrogates<br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |               | · · · · · |        |        |        |        |        |
| SURR: Bromofluorobenzene     | 74 - 121                               | 102.7%        | 103.7%    | 102.7% | 103.0% | 103.3% | 103.3% | 104.0% |
| SURR: Dibromofluoromethane   | 80 - 120                               | 96.3%         | 96.0%     | 93.7%  | 96.0%  | 95.0%  | 93.7%  | 93.3%  |
| SURR: Toluene-d8             | 81 - 117                               | 92.7%         | 93.3%     | 91.7%  | 92.7%  | 93.0%  | 93.0%  | 92.3%  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics
EPA SW-846 Method 8260
Page 1 of 2
ING STATION Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05925           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-40           |
| LN05926           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-45           |
| LN05927           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-50           |
| LN05928           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-55           |
| LN05929           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-60           |
| LN05930           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-65           |
| LN05931           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-70           |

|                               |         |         | LN05925 | LN05926 | LN05927 | LN05928 | LN05929 | LN05930 | LN05931 |
|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Compounds                     | MDL     | PQL     | Amount  |
|                               | (ug/kg) |
| Acetone                       | 32      | 160.0   | nd      |
| tert-Amyl methyl ether (TAME) | 23      | 115.0   | nd      |
| Benzene                       | 26      | 130.0   | nd      |
| Bromobenzene                  | 26      | 130.0   | nd      |
| Bromochloromethane            | 24      | 120.0   | nd      |
| Bromodichloromethane          | 22      | 110.0   | nd      |
| Bromoform                     | 23      | 115.0   | nd      |
| Bromomethane                  | 20      | 100.0   | nd      |
| 2-Butanone (MEK)              | 26      | 130.0   | nd      |
| tert-Butyl alcohol (TBA)      | 373     | 1865.0  | nd      |
| n-Butylbenzene                | 29      | 145.0   | nd      |
| sec-Butylbenzene              | 27      | 135.0   | nd      |
| tert-Butylbenzene             | 29      | 145.0   | nd      |
| tert-Butyl ethyl ether (ETBE) | 20      | 100.0   | nd      |
| Carbon disulfide              | 116     | 580.0   | nd      |
| Carbon Tetrachloride          | 32      | 160.0   | nd      |
| Chlorobenzene                 | 28      | 140.0   | nd      |
| Chloroethane                  | 42      | 210.0   | nd      |
| 2-Chloroethyl vinyl ether     | 23      | 115.0   | nd      |
| Chloroform                    | 30      | 150.0   | nd      |
| Chloromethane                 | 70      | 350.0   | nd      |
| 2-Chlorotoluene               | 27      | 135.0   | nd      |
| 4-Chlorotoluene               | 28      | 140.0   | nd      |
| Dibromochloromethane          | 25      | 125.0   | nd      |
| 1,2-Dibromo-3-chloropropane   | 31      | 155.0   | nd      |
| 1,2-Dibromoethane (EDB)       | 23      | 115.0   | nd      |
| Dibromomethane                | 33      | 165.0   | nd      |
| 1,2-Dichlorobenzene           | 27      | 135.0   | nd      | nd      | nđ      | nd      | nd      | nd      | nd      |
| 1,3-Dichlorobenzene           | 27      | 135.0   | nd      | nd      | nđ      | nd      | nd      | nd      | nd      |
| 1,4-Dichlorobenzene           | 33      | 165.0   | nd      |
| Dichlorodifluoromethane       | 37      | 185.0   | nd      |
| 1,1-Dichloroethane            | 29      | 145.0   | nd      |
| 1,2-Dichloroethane            | 22      | 110.0   | nd      |
| 1,1-Dichloroethene            | 28      | 140.0   | nd      |
| cis-1,2-Dichloroethene        | 26      | 130.0   | nd      |
| trans-1,2-Dichloroethene      | 32      | 160.0   | nd      |
| 1,2-Dichloropropane           | 22      | 110.0   | nd      |
| 1,3-Dichloropropane           | 21      | 105.0   | nd      |
| 2,2-Dichloropropane           | 38      | 190.0   | nd      |
| 1,1-Dichloropropene           | 27      | 135.0   | nd      |
| cis-1,3-Dichloropropene       | 26      | 130.0   | nd      |
| trans-1,3-Dichloropropene     | 29      | 145.0   | nd      | nd      | nd      | nď      | nd      | nd      | nd      |
| Diisopropyl ether (DIPE)      | 26      | 130.0   | nd      |
| Ethylbenzene                  | 30      | 150.0   | nd      |
| Hexachlorobutadiene           | 44      | 220.0   | nd      |
|                               |         |         |         |         |         |         |         |         |         |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05925           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-40           |
| LN05926           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-45           |
| LN05927           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-50           |
| LN05928           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-55           |
| LN05929           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-60           |
| LN05930           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-65           |
| LN05931           | 5/20/2013    | 5/20/2013 | 5/28/2013 | KLF-6-70           |

| Compounds                   | MDL<br>(ug/kg) | PQL<br>(ug/kg) | LN05925<br>Amount<br>(ug/kg) | LN05926<br>Amount<br>(ug/kg) | LN05927<br>Amount<br>(ug/kg) | LN05928<br>Amount<br>(ug/kg) | LN05929<br>Amount<br>(ug/kg) | LN05930<br>Amount<br>(ug/kg) | LN05931<br>Amount<br>(ug/kg) |
|-----------------------------|----------------|----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 2-Hexanone                  | 21             | 105.0          | nd                           |
| Isopropylbenzene            | 33             | 165.0          | nd                           |
| p-Isopropyltoluene          | 28             | 140.0          | nd                           |
| Methyl-t-butyl ether (MTBE) | 23             | 115.0          | nd                           |
| Methylene chloride          | 31             | 155.0          | nd                           |
| Methyl iodide (Iodomethane) | 20             | 100.0          | nd                           |
| 4-Methyl-2-pentanone (MIBK) | 19             | 95.0           | nd                           |
| Naphthalene                 | 30             | 150.0          | nd                           |
| Propylbenzene               | 30             | 150.0          | nd                           |
| Styrene (Phenylethylene)    | 33             | 165.0          | nd                           |
| 1,1,1,2-Tetrachloroethane   | 23             | 115.0          | nd                           |
| 1,1,2,2-Tetrachloroethane   | 40             | 200.0          | nd                           |
| Tetrachloroethylene (PCE)   | 27             | 135.0          | nd                           |
| Toluene                     | 25             | 125.0          | nd                           |
| 1,2,3-Trichlorobenzene      | 29             | 145.0          | nd                           |
| 1,2,4-Trichlorobenzene      | 31             | 155.0          | nd                           |
| 1,1,1-Trichloroethane       | 26             | 130.0          | nd                           |
| 1,1,2-Trichloroethane       | 23             | 115.0          | nd                           |
| Trichloroethylene (TCE)     | 24             | 120.0          | nd                           |
| Trichlorofluoromethane      | 35             | 175.0          | nd                           |
| 1,2,3-Trichloropropane      | 22             | 110.0          | nd                           |
| 1,2,4-Trimethylbenzene      | 25             | 125.0          | nd                           |
| 1,3,5-Trimethylbenzene      | 28             | 140.0          | nd                           |
| Vinyl acetate               | 52             | 260.0          | nd                           |
| Vinyl Chloride              | 36             | 180.0          | nd                           |
| m & p-Xylene                | 75             | 375.0          | nd                           |
| o-Xylene                    | 28             | 140.0          | nd                           |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL)

nd - Not Detected; below detection limit

|                                     |                                        | Quality Contr | ol Data |        |        |        |        |        |
|-------------------------------------|----------------------------------------|---------------|---------|--------|--------|--------|--------|--------|
| <u>Surrogates</u><br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |               |         |        |        |        |        |        |
| SURR: Bromofluorobenzene            | 74 - 121                               | 103.0%        | 102.7%  | 103.3% | 102.0% | 102.3% | 101.7% | 102.3% |
| SURR: Dibromofluoromethane          | 80 - 120                               | 93.3%         | 94.3%   | 93.3%  | 93.0%  | 93.7%  | 93.0%  | 91.7%  |
| SURR: Toluene-d8                    | 81 - 117                               | 92.0%         | 91.0%   | 92.3%  | 90.7%  | 92.0%  | 90.3%  | 90.0%  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|   |                   |              | Date      | Date      | 1000               |
|---|-------------------|--------------|-----------|-----------|--------------------|
| l | Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
|   | Blank             | 5/20/2013    | 5/20/2013 | 5/28/2013 | Method Blank       |
|   |                   |              |           |           |                    |
|   |                   |              |           |           |                    |
|   |                   | Î            |           |           |                    |
|   |                   |              |           |           |                    |
| l |                   |              |           |           |                    |
|   |                   |              |           |           |                    |
|   |                   |              |           |           |                    |

| Compounds                     | MDL   | PQL    | Blank<br>Amount |
|-------------------------------|-------|--------|-----------------|
| Compounds                     | ug/kg | ug/kg  | ug/kg           |
|                               | -55   | -55    | -33             |
| Acetone                       | 32    | 160.0  | nd              |
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd              |
| Benzene                       | 26    | 130.0  | nd              |
| Bromobenzene                  | 26    | 130.0  | nd              |
| Bromochloromethane            | 24    | 120.0  | nd              |
| Bromodichloromethane          | 22    | 110.0  | nd              |
| Bromoform                     | 23    | 115.0  | nd              |
| Bromomethane                  | 20    | 100.0  | nd              |
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd              |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd              |
| Butylbenzene                  | 29    | 145.0  | nd              |
| sec-Butylbenzene              | 27    | 135.0  | nd              |
| tert-Butylbenzene             | 29    | 145.0  | nd              |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd              |
| Carbon disulfide              | 116   | 580.0  | nd              |
| Carbon Tetrachloride          | 32    | 160.0  | nd              |
| Chlorobenzene                 | 28    | 140.0  | nd              |
| Chloroethane                  | 42    | 210.0  | nd              |
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd              |
| Chloroform                    | 30    | 150.0  | nd              |
| Chloromethane                 | 70    | 350.0  | nd              |
| 2-Chlorotoluene               | 27    | 135.0  | nd              |
| 4-Chlorotoluene               | 28    | 140.0  | nd              |
| Dibromochloromethane          | 25    | 125.0  | nd              |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd              |
| 1,2-Dibromoethane             | 23    | 115.0  | nd              |
| Dibromomethane                | 33    | 165.0  | nd              |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd              |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd              |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd              |
| Dichlorodifluoromethane       | 37    | 185.0  | nd              |
| 1,1-Dichloroethane            | 29    | 145.0  | nd              |
| 1,2-Dichloroethane            | 22    | 110.0  | nd              |
| 1,1-Dichloroethene            | 28    | 140.0  | nd              |
| cis-1,2-Dichloroethene        | 26    | 130.0  | nd              |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd              |
| 1,2-Dichloropropane           | 22    | 110.0  | nd              |
| 1,3-Dichloropropane           | 21    | 105.0  | nd              |
| 2,2-Dichloropropane           | 38    | 190.0  | nd              |
| 1,1-Dichloropropene           | 27    | 135.0  | nd              |
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd              |
| trans-1,3-Dichloropropene     | 29    | 145.0  | nd              |
| Diisopropyl ether (DIPE)      | 26    | 130.0  | nd              |
| Ethylbenzene                  | 30    | 150.0  | nd              |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

**PROJECT: FIGUEROA PUMPING STATION** 

Sample Matrix:

Soil

| ······································ |              | Date      | Date           |                            |
|----------------------------------------|--------------|-----------|----------------|----------------------------|
| Chemistry Log No.                      | Date Sampled | Received  | Analyzed       | Sample Description         |
| Blank                                  | 5/20/2013    | 5/20/2013 | 5/28/2013      | Method Blank               |
|                                        |              |           |                |                            |
| •                                      |              |           |                |                            |
|                                        |              |           |                |                            |
|                                        |              |           |                |                            |
|                                        |              |           |                |                            |
|                                        |              |           | <u> </u>       |                            |
|                                        |              |           | DII-           |                            |
| Compounds                              | MDL          | PQL       | Blank          |                            |
| Compounds                              | ug/kg        |           | Amount         |                            |
|                                        | ug/kg        | ug/kg     | ug/kg          |                            |
| Hexachlorobutadiene                    | 44           | 220.0     | nd             |                            |
| ?-Hexanone                             | 21           | 105.0     | nd             |                            |
| sopropylbenzene                        | 33           | 165.0     | nd             |                            |
| o-Isopropyltoluene                     | 28           | 140.0     | nd             |                            |
| Methyl-t-butyl ether (MTBE)            | 23           | 115.0     | nd             |                            |
| Methylene chloride                     | 31           | 155.0     | nd             |                            |
| odomethane                             | 20           | 100.0     | nd             |                            |
| Methyl isobutyl ketone (MIBK)          | 19           | 95.0      | nd             |                            |
| Naphthalene                            | 30           | 150.0     | nd             |                            |
| Propylbenzene                          | 30           | 150.0     | nd             |                            |
| Styrene                                | 33           | 165.0     | nd             |                            |
| ,1,1,2-Tetrachloroethane               | 23           | 115.0     | nd             |                            |
| ,1,2,2-Tetrachloroethane               | 40           | 200.0     | nd             |                            |
| Tetrachloroethylene                    | 27           | 135.0     | nd             |                            |
| Toluene                                | 25           | 125.0     | nd             |                            |
| ,2,3-Trichlorobenzene                  | 29           | 145.0     | nd             |                            |
| ,2,4-Trichlorobenzene                  | 31           | 155.0     | nd             |                            |
| 1,1,1-Trichloroethane                  | 26           | 130.0     | nd             |                            |
| 1,1,2-Trichloroethane                  | 23           | 115.0     | nd             |                            |
| frichloroethylene                      | 24           | 120.0     | nd             |                            |
| Frichlorofluoromethane                 | 35           | 175.0     | nd             |                            |
| 1,2,3-Trichloropropane                 | 22           | 110.0     | nd             |                            |
| ,2,4-Trimethylbenzene                  | 25           | 125.0     | nd             |                            |
| ,3,5-Trimethylbenzene                  | 28           | 140.0     | nd             |                            |
| /inyl acetate                          | 52           | 260.0     | nd             |                            |
| /inyl Chloride (Chloroethene)          | 36           | 180.0     | nd             |                            |
| n & p-Xylene                           | 75           | 375.0     | nd             |                            |
| -Xylene                                | 28           | 140.0     | nd             |                            |
| MDL - Method Detection Limit           |              |           |                | ion above MDL below PQL    |
| PQL - Practical Quantitation Lim       | it (5xMDL)   |           | nd - Not Detec | ted; below detection limit |
|                                        |              |           |                |                            |
|                                        |              |           | Quality Contro | l Data                     |
| _                                      | QC Limits    |           |                |                            |
| Surrogates                             | % Recovery   |           |                |                            |
| 30 (ug/L each)                         | Lower-Upper  |           |                |                            |

102.3%

96.0%

91.3%

Comment:

Analyst: Bryan Tiu

SURR: Toluene-d8

SURR: Bromofluorobenzene

SURR: Dibromofluoromethane

74 - 121

80 - 120

81 - 117

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/28/13 ANALYTICAL METHOD: <u>USEPA 8260</u>

BATCH #: LN05918 LN/LN05918 LN05919 LN05920 LN05921 LN05922 LN05923 LN05924 LN05925 LN05926 LN05927 LN05928 LN059

LAB SAMPLE I.D.: LN05922 UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 23.0 | 76.7 | 30.0                   | 23.5 | 78.3 | 2.1 %  | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 28.1 | 93.7 | 30.0                   | 28.7 | 95.7 | 2.1 %  | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 29.7 | 99.0 | 30.0                   | 29.9 | 99.7 | 0.70 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 29.4 | 98.0 | 30.0                   | 30.2 | 101  | 3.0 %  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.2 | 117  | 30.0                   | 35.7 | 119  | 1.7 %  | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED: 5/2

SUPPLY SOURCE:

LOT NUMBER:

5/28/13

ANALYTICAL METHOD:

LAB LCS I.D.: Q8087

UNIT: ug/kg

DATE OF SOURCE:

|                       |                     | <u> </u>            | 1          | T              |
|-----------------------|---------------------|---------------------|------------|----------------|
| ANALYTE               | LCS RESULT<br>ug/kg | TRUE VALUE<br>ug/kg | % RECOVERY | Advisory Range |
| 1,1,2-Trichloroethane | 30.8                | 30                  | 102.7      | 70 - 130       |
| 1,2-Dichloroethane    | 33.3                | 30                  | 111.0      | 70 - 130       |
| 1,4-Dichlorobenzene   | 31.2                | 30                  | 104.0      | 70 - 130       |
| Benzene               | 28.7                | 30                  | 95.7       | 70 - 130       |
| Bromoform             | 35.3                | 30                  | 117.7      | 70 - 130       |
| Carbon Tetrachloride  | 27.9                | 30                  | 93.0       | 70 - 130       |
| Tetrachloroethylene   | 28                  | 30                  | 93.3       | 70 - 130       |
| Trichloroethylene     | 27.6                | 30                  | 92.0       | 70 - 130       |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     | <u> </u>   |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |

**USEPA 8260** 

Report of GC/MS Analysis for Purgeable Volatile Organics
EPA SW-846 Method 8260
Page 1 of 2
ING STATION Sample Matrix: Soil

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05932           | 5/20/2013    | 5/20/2013 | 5/29/2013 | SOIL DRUM PROFILE  |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN05932<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|
| Acetone                       | 32           | 160.0        | nd                         |
| tert-Amyl methyl ether (TAME) | 23           | 115.0        | nd                         |
| Benzene                       | 26           | 130.0        | nd                         |
| Bromobenzene                  | 26           | 130.0        | nd                         |
| Bromochloromethane            | 24           | 120.0        | nd                         |
| Bromodichloromethane          | 22           | 110.0        | nd                         |
| Bromoform                     | 23           | 115.0        | nd                         |
| Bromomethane                  | 20           | 100.0        | nd                         |
| Methyl ethyl ketone (MEK)     | 26           | 130.0        | nd                         |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0       | nd                         |
| Butylbenzene                  | 29           | 145.0        | nd                         |
| sec-Butylbenzene              | 27           | 135.0        | nd                         |
| tert-Butylbenzene             | 29           | 145.0        | nd                         |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0        | nd                         |
| Carbon disulfide              | 116          | 580.0        | nd                         |
| Carbon Tetrachloride          | 32           | 160.0        | nd                         |
| Chlorobenzene                 | 28           | 140.0        | nd                         |
| Chloroethane                  | 42           | 210.0        | nd                         |
| 2-Chloroethyl vinyl ether     | 23           | 115.0        | nd                         |
| Chloroform                    | 30           | 150.0        | nd                         |
| Chloromethane                 | 70           | 350.0        | nd                         |
| 2-Chiorotoluene               | 27           | 135.0        | nd                         |
| 4-Chlorotoluene               | 28           | 140.0        | nd                         |
| Dibromochloromethane          | 25           | 125.0        | nd                         |
| 1,2-Dibromo-3-chloropropane   | 31           | 155.0        | nd                         |
| 1,2-Dibromoethane             | 23           | 115.0        | nd                         |
| Dibromomethane                | 33           | 165.0        | nd                         |
| 1,2-Dichlorobenzene           | 27           | 135.0        | nd                         |
| 1,3-Dichlorobenzene           | 27           | 135.0        | nd                         |
| 1,4-Dichlorobenzene           | 33           | 165.0        | nd                         |
| Dichlorodifluoromethane       | 37           | 185.0        | nd                         |
| 1,1-Dichloroethane            | 29           | 145.0        | nd                         |
| 1,2-Dichloroethane            | 22           | 110.0        | nd                         |
| 1,1-Dichloroethene            | 28           | 140.0        | nd                         |
| cis-1,2-Dichloroethene        | 26           | 130.0        | nd                         |
| trans-1,2-Dichloroethene      | 32           | 160.0        | nd                         |
| 1,2-Dichloropropane           | 22           | 110.0        | nd                         |
| 1,3-Dichloropropane           | 21           | 105.0        | nd                         |
| 2,2-Dichloropropane           | 38           | 190.0        | nd                         |
| 1,1-Dichloropropene           | 27           | 135.0        | nd                         |
| cis-1,3-Dichloropropene       | 26           | 130.0        | nd                         |
| trans-1,3-Dichloropropene     | 29           | 145.0        | nd                         |
| Diisopropyl ether (DIPE)      | 26           | 130.0        | nd                         |
| Ethylbenzene                  | 30           | 150.0        | nd                         |
| Hexachlorobutadiene           | 44           | 220.0        | nd                         |
|                               |              |              |                            |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Soil

| PROJECT: FIGUEROA PUMPII      | NG STATION   | Samp        | ile Matrix: | Soil                                   |
|-------------------------------|--------------|-------------|-------------|----------------------------------------|
|                               |              | Date        | Date        |                                        |
| Chemistry Log No.             | Date Sampled | Received    | Analyzed    | Sample Description                     |
| LN05932                       | 5/20/2013    | 5/20/2013   | 5/29/2013   | SOIL DRUM PROFILE                      |
|                               |              |             |             | *****                                  |
| y                             |              |             |             | · ************************************ |
|                               |              | <del></del> |             |                                        |
|                               |              |             |             |                                        |
|                               |              |             |             |                                        |
|                               |              |             |             |                                        |
|                               |              |             | LN05932     |                                        |
| ompounds                      | MDL          | PQL         | Amount      |                                        |
|                               | ug/kg        | ug/kg       | ug/kg       |                                        |
| -Hexanone                     | 21           | 105.0       | nd          |                                        |
| sopropylbenzene               | 33           | 165.0       | nd          |                                        |
| -Isopropyltoluene             | 28           | 140.0       | nd          |                                        |
| fethyl-t-butyl ether (MTBE)   | 23           | 115.0       | nd          |                                        |
| Methylene chloride            | 31           | 155.0       | nd          |                                        |
| odomethane                    | 20           | 100.0       | nd          |                                        |
| lethyl isobutyl ketone (MIBK) | 19           | 95.0        | nd          |                                        |
| aphthalene                    | 30           | 150.0       | nd          |                                        |
| ropylbenzene                  | 30           | 150.0       | nd          |                                        |
| tyrene                        | 33           | 165.0       | nd          |                                        |
| ,1,1,2-Tetrachloroethane      | 23           | 115.0       | nd          |                                        |
| 1,2,2-Tetrachloroethane       | 40           | 200.0       | nd          |                                        |
| etrachloroethylene            | 27           | 135.0       | nd          |                                        |
| oluene                        | 25           | 125.0       | nd          |                                        |
| 2,3-Trichlorobenzene          | 29           | 145.0       | nd          |                                        |
| ,2,4-Trichlorobenzene         | 31           | 155.0       | nd          |                                        |
| ,1,1-Trichloroethane          | 26           | 130.0       | nd          |                                        |
| ,1,2-Trichloroethane          | 23           | 115.0       | nd          |                                        |
| richloroethylene              | 24           | 120.0       | nd          |                                        |
|                               |              |             |             |                                        |

MDL - Method Detection Limit

Vinyl Chloride (Chloroethene)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

m & p-Xylene

o-Xylene

PQL - Practical Quantitation Limit (5xMDL)

35

22

25

28

52

36

75

28

175.0

110.0

125.0

140.0

260.0

180.0

375.0

140.0

nd

nd

nd

nd

nd

nd

nd

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |             | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
|                            | QC Limits   |                      |  |
| <u>Surrogates</u>          | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper |                      |  |
| SURR: Bromofluorobenzene   | 74 - 121    | 101.0%               |  |
| SURR: Dibromofluoromethane | 80 - 120    | 95.7%                |  |
| SURR: Toluene-d8           | 81 - 117    | 93.3%                |  |
|                            |             |                      |  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

Soil

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/20/2013    | 5/20/2013 | 5/28/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
| -,,,              |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL      | PQL    | Blank<br>Amount |
|-------------------------------|----------|--------|-----------------|
|                               | ug/kg    | ug/kg  | ug/kg           |
| Acetone                       | 32       | 160.0  | nd              |
| tert-Amyl methyl ether (TAME) | 23       | 115.0  | nd              |
| Benzene                       | 26       | 130.0  | nd              |
| Bromobenzene                  | 26       | 130.0  | nd              |
| Bromochloromethane            | 24       | 120.0  | nd              |
| Bromodichloromethane          | 22       | 110.0  | nd              |
| Bromoform                     | 23       | 115.0  | nd              |
| Bromomethane                  | 20       | 100.0  | nd              |
| Methyl ethyl ketone (MEK)     | 26       | 130.0  | nd              |
| tert-Butyl alcohol (TBA)      | 373      | 1865.0 | nd              |
| Butylbenzene                  | 29       | 145.0  | nd              |
| sec-Butylbenzene              | 27       | 135.0  | nd              |
| tert-Butylbenzene             | 29       | 145.0  | nd              |
| tert-Butyl ethyl ether (ETBE) | 20       | 100.0  | nd              |
| Carbon disulfide              | 116      | 580.0  | nď              |
| Carbon Tetrachloride          | 32       | 160.0  | nd              |
| Chlorobenzene                 | 28       | 140.0  | nd              |
| Chloroethane                  | 42       | 210.0  | nd              |
| 2-Chloroethyl vinyl ether     | 23       | 115.0  | nd              |
| Chloroform                    | 30       | 150.0  | nd              |
| Chloromethane                 | 70       | 350.0  | nd              |
| 2-Chlorotoluene               | 27       | 135.0  | nd              |
| 4-Chlorotoluene               | 28       | 140.0  | nd              |
| Dibromochloromethane          | 25       | 125.0  | nd              |
| 1,2-Dibromo-3-chloropropane   | 31       | 155.0  | nd              |
| 1,2-Dibromoethane             | 23       | 115.0  | nd              |
| Dibromomethane                | 33       | 165.0  | nd              |
| 1,2-Dichlorobenzene           | 27       | 135.0  | nd              |
| 1,3-Dichlorobenzene           | 27       | 135.0  | nd              |
| 1,4-Dichlorobenzene           | 33       | 165.0  | nd              |
| Dichlorodifluoromethane       | 37       | 185.0  | nd              |
| 1,1-Dichloroethane            | 29       | 145.0  | nd              |
| 1,2-Dichloroethane            | 22       | 110.0  | nd              |
| 1,1-Dichloroethene            | 28       | 140.0  | nd              |
| cis-1,2-Dichloroethene        | 26       | 130.0  | nd              |
| trans-1,2-Dichloroethene      | 32       | 160.0  | nd              |
| 1,2-Dichloropropane           | 22       | 110.0  | nd              |
| 1,3-Dichloropropane           | 21       | 105.0  | nd              |
| 2,2-Dichloropropane           | 38       | 190.0  | nd<br>1         |
| 1,1-Dichloropropene           | 27       | 135.0  | nd              |
| cis-1,3-Dichloropropene       | 26<br>20 | 130.0  | nd              |
| trans-1,3-Dichloropropene     | 29       | 145.0  | nd              |
| Diisopropyl ether (DIPE)      | 26<br>30 | 130.0  | nd              |
| Ethylbenzene                  | 30       | 150.0  | nd              |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix:

| ~~~ | 1 |
|-----|---|
|     | ı |
|     |   |

|                                  |               | Date      | Date          | <del>-                                    </del> |
|----------------------------------|---------------|-----------|---------------|--------------------------------------------------|
| Chemistry Log No.                | Date Sampled  | Received  | Analyzed      | Sample Description                               |
| Blank                            | 5/20/2013     | 5/20/2013 | 5/28/2013     | Method Blank                                     |
|                                  |               |           |               |                                                  |
|                                  |               |           |               |                                                  |
|                                  |               |           |               |                                                  |
|                                  |               |           |               |                                                  |
|                                  |               |           |               |                                                  |
|                                  |               |           |               |                                                  |
|                                  |               | ,         |               |                                                  |
| _                                |               |           | Blank         |                                                  |
| Compounds                        | MDL           | PQL       | Amount        |                                                  |
|                                  | ug/kg         | ug/kg     | ug/kg         |                                                  |
| H                                | 4.4           | 000.0     |               |                                                  |
| Hexachlorobutadiene              | 44            | 220.0     | nd            |                                                  |
| 2-Hexanone                       | 21            | 105.0     | nd<br>        |                                                  |
| Isopropylbenzene                 | 33            | 165.0     | nd            |                                                  |
| p-Isopropyltoluene               | 28            | 140.0     | nd            |                                                  |
| Methyl-t-butyl ether (MTBE)      | 23            | 115.0     | nd<br>        |                                                  |
| Methylene chloride               | 31            | 155.0     | nd<br>        |                                                  |
| lodomethane                      | 20            | 100.0     | nd            |                                                  |
| Methyl isobutyl ketone (MIBK)    | 19            | 95.0      | nd            |                                                  |
| Naphthalene                      | 30            | 150.0     | nd            |                                                  |
| Propylbenzene                    | 30            | 150.0     | nd            |                                                  |
| Styrene                          | 33            | 165.0     | nd            |                                                  |
| 1,1,1,2-Tetrachloroethane        | 23            | 115.0     | nd            |                                                  |
| 1,1,2,2-Tetrachloroethane        | 40            | 200.0     | nd            |                                                  |
| Tetrachloroethylene              | 27            | 135.0     | nd            |                                                  |
| Toluene                          | 25            | 125.0     | nd            |                                                  |
| 1,2,3-Trichlorobenzene           | 29            | 145.0     | nd            |                                                  |
| 1,2,4-Trichlorobenzene           | 31            | 155.0     | nd            |                                                  |
| 1,1,1-Trichloroethane            | 26            | 130.0     | nd            |                                                  |
| 1,1,2-Trichloroethane            | 23            | 115.0     | nd            |                                                  |
| Trichloroethylene                | 24            | 120.0     | nd            |                                                  |
| Trichlorofluoromethane           | 35            | 175.0     | nd            |                                                  |
| 1,2,3-Trichloropropane           | 22            | 110.0     | n <b>d</b>    |                                                  |
| 1,2,4-Trimethylbenzene           | 25            | 125.0     | nd            |                                                  |
| 1,3,5-Trimethylbenzene           | 28            | 140.0     | nd            |                                                  |
| Vinyl acetate                    | 52            | 260.0     | nd            |                                                  |
| Vinyl Chloride (Chloroethene)    | 36            | 180.0     | nd            |                                                  |
| m & p-Xylene                     | 75            | 375.0     | nd            |                                                  |
| o-Xylene                         | 28            | 140.0     | nd            | NO. L. DOL                                       |
| MDL - Method Detection Limit     | % (F. A (F) ) |           |               | ation above MDL below PQL                        |
| PQL - Practical Quantitation Lim | it (5xMDL)    |           | nd - Not Dete | cted; below detection limit                      |
| <u>.</u>                         |               |           | Ouglib: Cart  | ol Deto                                          |
|                                  | OC Limita     |           | Quality Contr | <u>oi Data</u>                                   |
| Surrogaton                       | QC Limits     |           |               |                                                  |
| Surrogates                       | % Recovery    |           |               |                                                  |

102.3%

96.0%

91.3%

SURR: Toluene-d8
Comment:

30 (ug/L each)

Lower-Upper

74 - 121

80 - 120

81 - 117

Analyst: Bryan Tiu

SURR: Bromofluorobenzene

SURR: Dibromofluoromethane

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/28/13 ANALYTICAL METHOD: USEPA 8260

BATCH #: LN05932 LN05932

LAB SAMPLE I.D.: LN05922 UNIT: ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 23.0 | 76.7 | 30.0                   | 23.5 | 78.3 | 2.1 %  | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 28.1 | 93.7 | 30.0                   | 28.7 | 95.7 | 2.1 %  | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 29.7 | 99.0 | 30.0                   | 29.9 | 99.7 | 0.70 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 29.4 | 98.0 | 30.0                   | 30.2 | 101  | 3.0 %  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.2 | 117  | 30.0                   | 35.7 | 119  | 1.7 %  | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED: 5/28/13 ANALYTICAL METHOD: USEPA 8260

SUPPLY SOURCE: LAB LCS I.D.: Q8087

LOT NUMBER: UNIT: ug/kg

DATE OF SOURCE:

|                       |                     |                     | T          | 1              |
|-----------------------|---------------------|---------------------|------------|----------------|
| ANALYTE               | LCS RESULT<br>ug/kg | TRUE VALUE<br>ug/kg | % RECOVERY | Advisory Range |
| 1,1,2-Trichloroethane | 30.8                | 30                  | 102.7      | 70 - 130       |
| 1,2-Dichloroethane    | 33.3                | 30                  | 111.0      | 70 - 130       |
| 1,4-Dichlorobenzene   | 31.2                | 30                  | 104.0      | 70 - 130       |
| Benzene               | 28.7                | 30                  | 95.7       | 70 - 130       |
| Bromoform             | 35.3                | 30                  | 117.7      | 70 - 130       |
| Carbon Tetrachloride  | 27.9                | 30                  | 93.0       | 70 - 130       |
| Tetrachloroethylene   | 28                  | 30                  | 93.3       | 70 - 130       |
| Trichloroethylene     | 27.6                | 30                  | 92.0       | 70 - 130       |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |

Reviewed by: R. Gentallen /14/13

Analyst: B. Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics
EPA SW-846 Method 8260
Page 1 of 2
ING STATION Sample Matrix: Water

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05576           | 5/13/2013    | 5/13/2013 | 5/21/2013 | QCTB               |
| LN05577           | 5/13/2013    | 5/13/2013 | 5/21/2013 | QCEB               |
| LN05595           | 5/13/2013    | 5/13/2013 | 5/21/2013 | QCFB               |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              | :         |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | LN05576<br>Amount<br>(ug/L) | LN05577<br>Amount<br>(ug/L) | LN05595<br>Amount<br>(ug/L) |
|-------------------------------|---------------|---------------|-----------------------------|-----------------------------|-----------------------------|
| Acetone                       | 0.58          | 2.9           | nd                          | nd                          | nd                          |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Benzene                       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| Bromobenzene                  | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromochloromethane            | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Bromodichloromethane          | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromoform                     | 0.10          | 0.5           | nď                          | nd                          | nd                          |
| Bromomethane                  | 0.41          | 2.1           | nď                          | nd                          | nd                          |
| Methyl ethyl ketone (MEK)     | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                          | nd                          | nd                          |
| Butylbenzene                  | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| tert-Butylbenzene             | 0.18          | 0.9           | nď                          | nd                          | nd                          |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                          | nd                          | nd                          |
| Carbon disulfide              | 0.30          | 1.5           | nd                          | nd                          | nd                          |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Chlorobenzene                 | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| Chloroethane                  | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nď                          | nd                          | nd                          |
| Chloroform                    | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Chloromethane                 | 0.13          | 0.7           | nđ                          | nd                          | nd                          |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                          | nd                          | nd                          |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Dibromochloromethane          | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | n <b>d</b>                  | nd                          | nd                          |
| 1,2-Dibromoethane             | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Dibromomethane                | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,4-Dichlorobenzene           | 0.15          | 0.8           | nd                          | nd                          | nd                          |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                          | nd                          | nd                          |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Diisopropyl ether (DIPE)      | 0.15          | 8.0           | nd                          | nd                          | nd                          |
| Ethylbenzene                  | 0.27          | 1.4           | nd                          | nd                          | nd                          |
| Hexachlorobutadiene           | 0.13          | 0.7           | nd                          | nd                          | nd                          |
|                               |               |               |                             |                             |                             |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Water

PROJECT: FIGUEROA PUMPING STATION

| OL CALL DE ME                           | Data Carratad | Date      | Date      | Consolo Donosistico |
|-----------------------------------------|---------------|-----------|-----------|---------------------|
| Chemistry Log No.                       | Date Sampled  | Received  | Analyzed  | Sample Description  |
| LN05576                                 | 5/13/2013     | 5/13/2013 | 5/21/2013 | QCTB                |
| LN05577                                 | 5/13/2013     | 5/13/2013 | 5/21/2013 | QCEB                |
| LN05595                                 | 5/13/2013     | 5/13/2013 | 5/21/2013 | QCFB                |
|                                         |               |           |           | <del></del>         |
|                                         |               |           |           |                     |
|                                         |               |           |           |                     |
| 7.000.000                               |               |           |           |                     |
| * ************************************* | 1             |           |           |                     |
| A 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -             |           | LN05576   | LN05577 LN05595     |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | LN05576<br>Amount<br>(ug/L) | LN05577<br>Amount<br>(ug/L) | LN05595<br>Amount<br>(ug/L) |
|-------------------------------|---------------|---------------|-----------------------------|-----------------------------|-----------------------------|
| 2-Hexanone                    | 0.07          | 0.4           | nd                          | nd                          | nd                          |
| Isopropylbenzene              | 0.20          | 1.0           | nd                          | nd                          | nd                          |
| p-Isopropyltoluene            | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Methyl-t-butyl ether (MTBE)   | 0.14          | 0.7           | nd                          | nd                          | nd                          |
| Methylene chloride            | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| Iodomethane                   | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| Methyl isobutyl ketone (MIBK) | 0.09          | 0.5           | nd                          | nd                          | nď                          |
| Naphthalene                   | 0.38          | 1.9           | nd                          | nd                          | nd                          |
| Propylbenzene                 | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Styrene                       | 0.24          | 1.2           | nd                          | nd                          | nd                          |
| 1,1,1,2-Tetrachloroethane     | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,1,2,2-Tetrachloroethane     | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Tetrachloroethylene           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Toluene                       | 0.29          | 1.5           | nd                          | nd                          | nd                          |
| 1,2,3-Trichlorobenzene        | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| 1,2,4-Trichlorobenzene        | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| 1,1,1-Trichloroethane         | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| 1,1,2-Trichloroethane         | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Trichloroethylene             | 0.16          | 0.8           | nd                          | nd                          | nd                          |
| Trichlorofluoromethane        | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2,3-Trichloropropane        | 0.14          | 0.7           | nd                          | nd                          | nd                          |
| 1,2,4-Trimethylbenzene        | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| 1,3,5-Trimethylbenzene        | 0.26          | 1.3           | nd                          | nd                          | nd                          |
| Vinyl acetate                 | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| Vinyl Chloride (Chloroethene) | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| m & p-Xylene                  | 0.60          | 3.0           | nd                          | nd                          | nd                          |
| o-Xylene                      | 0.29          | 1.5           | nd                          | nd                          | nd                          |
| MDL - Method Detection Limit  |               |               | J - Concen                  | tration abov                | e MDL belov                 |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL)

nd - Not Detected; below detection limit

|                            |             | Quality Contr | ol Data |       |  |
|----------------------------|-------------|---------------|---------|-------|--|
|                            | QC Limits   |               |         |       |  |
| <u>Surrogates</u>          | % Recovery  |               |         |       |  |
| 30 (ug/L each)             | Lower-Upper |               |         |       |  |
| SURR: Bromofluorobenzene   | 80 - 130    | 100.0%        | 100.0%  | 99.0% |  |
| SURR: Dibromofluoromethane | 80 - 120    | 98.0%         | 97.0%   | 97.0% |  |
| SURR: Toluene-d8           | 80 - 130    | 96.0%         | 96.3%   | 96.0% |  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description     |
|-------------------|--------------|------------------|------------------|------------------------|
| Blank             | 5/14/2013    | 5/14/2013        | 5/21/2013        | Method Blank           |
|                   |              |                  |                  | 14, 14, 14 14 <b>9</b> |
|                   |              | ****             |                  |                        |
|                   |              |                  |                  | -                      |
|                   |              |                  |                  |                        |
|                   |              |                  |                  |                        |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | Blank<br>Amount<br>ug/L |
|-------------------------------|---------------|---------------|-------------------------|
|                               | (-3:-7        | (- <b>3</b> / | -3-                     |
| Acetone                       | 0.58          | 2.9           | nd                      |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                      |
| Benzene                       | 0.12          | 0.6           | nd                      |
| Bromobenzene                  | 0.10          | 0.5           | nd                      |
| Bromochloromethane            | 0.09          | 0.5           | nd                      |
| Bromodichloromethane          | 0.10          | 0.5           | nd                      |
| Bromoform                     | 0.10          | 0.5           | nd                      |
| Bromomethane                  | 0.41          | 2.1           | nd                      |
| 2-Butanone (MEK)              | 0.17          | 0.9           | nd                      |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                      |
| n-Butylbenzene                | 0.21          | 1.1           | nd                      |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                      |
| tert-Butylbenzene             | 0.18          | 0.9           | nd                      |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                      |
| Carbon disulfide              | 0.30          | 1.5           | nd                      |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                      |
| Chlorobenzene                 | 0.18          | 0.9           | nd                      |
| Chloroethane                  | 0.17          | 0.9           | nd                      |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nd                      |
| Chloroform                    | 0.10          | 0.5           | nd                      |
| Chloromethane                 | 0.13          | 0.7           | nd                      |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                      |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                      |
| Dibromochloromethane          | 0.11          | 0.6           | nd                      |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | nd                      |
| 1,2-Dibromoethane (EDB)       | 0.10          | 0.5           | nd                      |
| Dibromomethane                | 0.10          | 0.5           | nd                      |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                      |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                      |
| 1,4-Dichlorobenzene           | 0.15          | 0.8           | nd                      |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                      |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                      |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                      |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nd                      |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                      |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                      |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                      |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                      |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                      |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                      |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                      |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                      |
| Diisopropyl ether (DIPE)      | 0.15          | 8.0           | nd                      |
| Ethylbenzene                  | 0.27          | 1.4           | nd                      |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

|                                   | <del></del>  | ·           |                                                  |                               |
|-----------------------------------|--------------|-------------|--------------------------------------------------|-------------------------------|
|                                   |              | Date        | Date                                             | 0 1 5 1 "                     |
| Chemistry Log No.                 | Date Sampled |             | Analyzed                                         | Sample Description            |
| Blank                             | 5/14/2013    | 5/14/2013   | 5/21/2013                                        | Method Blank                  |
|                                   |              |             |                                                  | <del></del>                   |
| <del>.</del>                      |              |             |                                                  |                               |
|                                   | -            |             | <del>                                     </del> |                               |
|                                   |              |             | <del> </del>                                     |                               |
| <del>-</del>                      | +            |             | <del>                                     </del> |                               |
| <del></del>                       | !            |             | <u> </u>                                         |                               |
|                                   |              |             | Blank                                            |                               |
| Compounds                         | MDL          | PQL         | Amount                                           |                               |
| •                                 | (ug/L)       | (ug/L)      | ug/L                                             |                               |
|                                   | . • /        | . • /       | J                                                |                               |
| Hexachlorobutadiene               | 0.13         | 0.7         | nd                                               |                               |
| 2-Hexanone                        | 0.07         | 0.4         | nd                                               |                               |
| sopropylbenzene                   | 0.20         | 1.0         | nd                                               |                               |
| o-Isopropyltoluene                | 0.25         | 1.3         | nd                                               |                               |
| Methyl-t-butyl ether (MTBE)       | 0.14         | 0.7         | nd                                               |                               |
| Methylene chloride                | 0.18         | 0.9         | nd                                               |                               |
| Methyl iodide (lodomethane)       | 0.11         | 0.6         | nd                                               |                               |
| 4-Methyl-2-pentanone (MIBK)       | 0.09         | 0.5         | nd                                               |                               |
| Naphthalene                       | 0.38         | 1.9         | nd                                               |                               |
| Propylbenzene                     | 0.25         | 1.3         | nd                                               |                               |
| Styrene (Phenylethylene)          | 0.24         | 1.2         | nd                                               |                               |
| 1,1,1,2-Tetrachloroethane         | 0.10         | 0.5         | nd                                               |                               |
| 1,1,2,2-Tetrachloroethane         | 0.10         | 0.5         | nd                                               |                               |
| Tetrachloroethylene               | 0.10         | 0.5         | nd                                               |                               |
| Toluene                           | 0.29         | 1.5         | nd                                               |                               |
| 1,2,3-Trichlorobenzene            | 0.17         | 0.9         | nd                                               |                               |
| 1,2,4-Trichlorobenzene            | 0.12         | 0.6         | nd                                               |                               |
| 1,1,1-Trichloroethane             | 0.09         | 0.5         | nd                                               |                               |
| 1,1,2-Trichloroethane             | 0.09         | 0.5         | nd                                               |                               |
| Trichloroethylene                 | 0.16         | 8.0         | nd                                               |                               |
| Trichlorofluoromethane            | 0.10         | 0.5         | nd                                               |                               |
| 1,2,3-Trichloropropane            | 0.14         | 0.7         | nd                                               |                               |
| 1,2,4-Trimethylbenzene            | 0.17         | 0.9         | nd                                               |                               |
| 1,3,5-Trimethylbenzene            | 0.26         | 1.3         | nd                                               |                               |
| Vinyl acetate                     | 0.11         | 0.6         | nd                                               |                               |
| Vinyl Chloride (chloroethene)     | 0.11         | 0.6         | nd                                               |                               |
| m & p-Xylene                      | 0.60         | 3.0         | nd                                               |                               |
| o-Xylene                          | 0.29         | 1.5         | nd                                               |                               |
| MDL - Method Detection Limit      |              |             | J - Concent                                      | ration above MDL below PQL    |
| PQL - Practical Quantitation Limi | t (5xMDL)    |             | nd - Not De                                      | tected; below detection limit |
|                                   |              | <del></del> |                                                  |                               |
|                                   |              |             | 0 11 0                                           | 4.104                         |
|                                   |              |             | Quality Con                                      | itrol Data                    |
|                                   | QC Limits    |             |                                                  |                               |
| Surrogates                        | % Recovery   |             |                                                  |                               |
| 30 (ug/L each)                    | Lower-Upper  |             |                                                  |                               |
| ours s. d. ;                      | 00 100       |             | 400.000                                          |                               |
| SURR: Bromofluorobenzene          | 80 -130      |             | 100.3%                                           |                               |
| SURR: Dibromofluoromethane        | 80 - 120     |             | 99.0%                                            |                               |

94.3%

Comment:

Analyst: Bryan Tiu

SURR: Toluene-d8

80 - 130

**USEPA 8260** 

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/21/13

BATCH #: \$VOC-W-77! LN05576 LN05577 LN05595

LAB SAMPLE I.D.: LN05646 UNIT: ug/L

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|-----|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 32.8 | 109 | 30.0                   | 32.6 | 109  | 0.0%   | 61-145          | 14%       |
| Benzene            | ND               | 30.0          | 30.3 | 101 | 30.0                   | 30.0 | 100  | 1.0 %  | 76-127          | 11%       |
| Trichloroethylene  | ND               | 30.0          | 31.5 | 105 | 30.0                   | 31.2 | 104  | 0.96 % | 71-120          | 14%       |
| Toluene            | ND               | 30.0          | 32.5 | 108 | 30.0                   | 32.3 | 108  | 0.0%   | 76-125          | 13%       |
| Chlorobenzene      | ND               | 30.0          | 36.3 | 121 | 30.0                   | 36.0 | 120  | 0.83 % | 75-130          | 13%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/21/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LOT NUMBER:

LAB LCS I.D.: UNIT:

Q5057 ug/L

ANALYTICAL METHOD:

DATE OF SOURCE:

|                                       | LCS RESULT | TRUE VALUE |            |                                       |
|---------------------------------------|------------|------------|------------|---------------------------------------|
| ANALYTE                               | ug/L       | ug/L       | % RECOVERY | Advisory Range                        |
| 1,1,2-Trichloroethane                 | 32.2       | 30         | 107.3      | 70 - 130                              |
| 1,2-Dichloroethane                    | 29.8       | 30         | 99.3       | 70 - 130                              |
| 1,4-Dichlorobenzene                   | 31.6       | 30         | 105.3      | 70 - 130                              |
| Benzene                               | 26.6       | 30         | 88.7       | 70 - 130                              |
| Bromoform                             | 31.9       | 30         | 106.3      | 70 - 130                              |
| Carbon Tetrachloride                  | 23.6       | 30         | 78.7       | 70 - 130                              |
| Tetrachloroethylene                   | 27.5       | 30         | 91.7       | 70 - 130                              |
| Trichloroethylene                     | 27.7       | 30         | 92.3       | 70 - 130                              |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            | · · · · · · · · · · · · · · · · · · · |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
|                                       |            |            |            |                                       |
| · · · · · · · · · · · · · · · · · · · |            | ·          | •          | <del>'</del>                          |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

Page 1 of 2

ING STATION Sample Matrix: Water

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05646           | 5/14/2013    | 5/14/2013 | 5/21/2013 | QCEB               |
| LN05647           | 5/14/2013    | 5/14/2013 | 5/21/2013 | QCTB               |
| LN05660           | 5/14/2013    | 5/14/2013 | 5/21/2013 | QCFB               |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | LN05646<br>Amount<br>(ug/L) | LN05647<br>Amount<br>(ug/L) | LN05660<br>Amount<br>(ug/L) |
|-------------------------------|---------------|---------------|-----------------------------|-----------------------------|-----------------------------|
| Acetone                       | 0.58          | 2.9           | nd                          | nd                          | nd                          |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Benzene                       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| Bromobenzene                  | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromochloromethane            | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Bromodichloromethane          | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromoform                     | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromomethane                  | 0.41          | 2.1           | nd                          | nd                          | nd                          |
| Methyl ethyl ketone (MEK)     | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                          | nd                          | nd                          |
| Butylbenzene                  | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| tert-Butylbenzene             | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                          | nd                          | nd                          |
| Carbon disulfide              | 0.30          | 1.5           | nd                          | nd                          | nd                          |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Chlorobenzene                 | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| Chloroethane                  | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Chloroform                    | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Chloromethane                 | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                          | nd                          | nd                          |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Dibromochloromethane          | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 1,2-Dibromoethane             | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Dibromomethane                | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,4-Dichlorobenzene           | 0.15          | 0.8           | nd                          | nd                          | nd                          |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                          | nd                          | nd                          |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Diisopropyl ether (DIPE)      | 0.15          | 0.8           | nd                          | nd                          | nd                          |
| Ethylbenzene                  | 0.27          | 1.4           | nd                          | nd                          | nd                          |
| Hexachlorobutadiene           | 0.13          | 0.7           | nd                          | nd                          | nd                          |
|                               |               |               |                             |                             |                             |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Water

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05646           | 5/14/2013    | 5/14/2013 | 5/21/2013 | QCEB               |
| LN05647           | 5/14/2013    | 5/14/2013 | 5/21/2013 | QCTB               |
| LN05660           | 5/14/2013    | 5/14/2013 | 5/21/2013 | QCFB               |
| "                 |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

|                               |        |        | LN05646 | LN05647 | LN05660 |
|-------------------------------|--------|--------|---------|---------|---------|
| Compounds                     | MDL    | PQL    | Amount  | Amount  | Amount  |
|                               | (ug/L) | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)  |
|                               |        |        |         |         |         |
| 2-Hexanone                    | 0.07   | 0.4    | nd      | nd      | nd      |
| Isopropyibenzene              | 0.20   | 1.0    | nd      | nd      | nd      |
| p-Isopropyltoluene            | 0.25   | 1.3    | nd      | nd      | nd      |
| Methyl-t-butyl ether (MTBE)   | 0.14   | 0.7    | nd      | nd      | nd      |
| Methylene chloride            | 0.18   | 0.9    | nd      | nd      | nd      |
| Iodomethane                   | 0.11   | 0.6    | nd      | nd      | nd      |
| Methyl isobutyl ketone (MIBK) | 0.09   | 0.5    | nd      | nd      | nd      |
| Naphthalene                   | 0.38   | 1.9    | nd      | nd      | nd      |
| Propylbenzene                 | 0.25   | 1.3    | nd      | nd      | nd      |
| Styrene                       | 0.24   | 1.2    | nd      | nd      | nd      |
| 1,1,1,2-Tetrachloroethane     | 0.10   | 0.5    | nd      | nd      | nd      |
| 1,1,2,2-Tetrachloroethane     | 0.10   | 0.5    | nd      | nd      | nd      |
| Tetrachloroethylene           | 0.10   | 0.5    | nd      | nd      | nd      |
| Toluene                       | 0.29   | 1.5    | nd      | nd      | nd      |
| 1,2,3-Trichlorobenzene        | 0.17   | 0.9    | nd      | nd      | nd      |
| 1,2,4-Trichlorobenzene        | 0.12   | 0.6    | nd      | nd      | nd      |
| 1,1,1-Trichloroethane         | 0.09   | 0.5    | nd      | nd      | nd      |
| 1,1,2-Trichloroethane         | 0.09   | 0.5    | nd      | nd      | nd      |
| Trichloroethylene             | 0.16   | 0.8    | nd      | nd      | nd      |
| Trichlorofluoromethane        | 0.10   | 0.5    | nd      | nd      | nd      |
| 1,2,3-Trichloropropane        | 0.14   | 0.7    | nd      | nd      | nd      |
| 1,2,4-Trimethylbenzene        | 0.17   | 0.9    | nd      | nd      | nd      |
| 1,3,5-Trimethylbenzene        | 0.26   | 1.3    | nd      | nd      | nd      |
| Vinyl acetate                 | 0.11   | 0.6    | nd      | nd      | nd      |
| Vinyl Chloride (Chloroethene) | 0.11   | 0.6    | nd      | nd      | nd      |
| m & p-Xylene                  | 0.60   | 3.0    | nd      | nd      | nd      |
| o-Xylene                      | 0.29   | 1.5    | nd      | nd      | nd      |
| TOTAL TOTAL CONTRACTOR        |        |        | 1 0     |         |         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |             | Quality Contro | ol Data |        |  |
|----------------------------|-------------|----------------|---------|--------|--|
|                            | QC Limits   |                |         |        |  |
| <u>Surrogates</u>          | % Recovery  |                |         |        |  |
| 30 (ug/L each)             | Lower-Upper |                |         |        |  |
| SURR: Bromofluorobenzene   | 80 - 130    | 99.3%          | 99.7%   | 100.0% |  |
| SURR: Dibromofluoromethane | 80 - 120    | 97.7%          | 98.0%   | 96.7%  |  |
| SURR: Toluene-d8           | 80 - 130    | 95.3%          | 95.0%   | 95.7%  |  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| Blank             | 5/14/2013    | 5/14/2013        | 5/21/2013        | Method Blank       |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              |                  |                  | 14.                |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | Blank<br>Amount<br>ug/L |
|-------------------------------|---------------|---------------|-------------------------|
| Acetone                       | 0.58          | 2.9           | nd                      |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                      |
| Benzene                       | 0.12          | 0.6           | nd                      |
| Bromobenzene                  | 0.10          | 0.5           | nd                      |
| Bromochloromethane            | 0.09          | 0.5           | nd                      |
| Bromodichloromethane          | 0.10          | 0.5           | nd                      |
| Bromoform                     | 0.10          | 0.5           | nd                      |
| Bromomethane                  | 0.41          | 2.1           | nd                      |
| 2-Butanone (MEK)              | 0.17          | 0.9           | nd                      |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                      |
| n-Butylbenzene                | 0.21          | 1.1           | nd                      |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                      |
| tert-Butylbenzene             | 0.18          | 0.9           | nd                      |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                      |
| Carbon disulfide              | 0.30          | 1.5           | nd                      |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                      |
| Chlorobenzene                 | 0.18          | 0.9           | nd                      |
| Chloroethane                  | 0.17          | 0.9           | nd                      |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nd                      |
| Chloroform                    | 0.10          | 0.5           | nd                      |
| Chloromethane                 | 0.13          | 0.7           | nd                      |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                      |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                      |
| Dibromochloromethane          | 0.11          | 0.6           | nd                      |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | nd                      |
| 1,2-Dibromoethane (EDB)       | 0.10          | 0.5           | nd                      |
| Dibromomethane                | 0.10          | 0.5           | nd                      |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                      |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                      |
| 1,4-Dichlorobenzene           | 0.15          | 0.8           | nd                      |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                      |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                      |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                      |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nd                      |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                      |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                      |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                      |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                      |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                      |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                      |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                      |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                      |
| Diisopropyl ether (DIPE)      | 0.15          | 0.8           | nd                      |
| Ethylbenzene                  | 0.27          | 1.4           | nd                      |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

|                   |              | Date      | Date      | -                  |  |
|-------------------|--------------|-----------|-----------|--------------------|--|
| Chemistry Log No. | Date Sampled |           |           | Sample Description |  |
| Blank             | 5/14/2013    | 5/14/2013 | 5/21/2013 | Method Blank       |  |
|                   |              |           |           |                    |  |
|                   |              |           |           |                    |  |
|                   |              |           |           |                    |  |
|                   |              |           |           | ==                 |  |
|                   |              |           |           |                    |  |
|                   |              |           |           |                    |  |

|                               |        |        | Blank  |
|-------------------------------|--------|--------|--------|
| Compounds                     | MDL    | PQL    | Amount |
|                               | (ug/L) | (ug/L) | ug/L   |
| Hexachlorobutadiene           | 0.13   | 0.7    | nd     |
| 2-Hexanone                    | 0.07   | 0.4    | nd     |
| Isopropylbenzene              | 0.20   | 1.0    | nd     |
| p-Isopropyltoluene            | 0.25   | 1.3    | nd     |
| Methyl-t-butyl ether (MTBE)   | 0.14   | 0.7    | nd     |
| Methylene chloride            | 0.18   | 0.9    | nd     |
| Methyl iodide (lodomethane)   | 0.11   | 0.6    | nd     |
| 4-Methyl-2-pentanone (MIBK)   | 0.09   | 0.5    | nd     |
| Naphthalene                   | 0.38   | 1.9    | nd     |
| Propylbenzene                 | 0.25   | 1.3    | nd     |
| Styrene (Phenylethylene)      | 0.24   | 1.2    | nd     |
| 1,1,1,2-Tetrachloroethane     | 0.10   | 0.5    | nd     |
| 1,1,2,2-Tetrachloroethane     | 0.10   | 0.5    | nd     |
| Tetrachloroethylene           | 0.10   | 0.5    | nd     |
| Toluene                       | 0.29   | 1.5    | nd     |
| 1,2,3-Trichlorobenzene        | 0.17   | 0.9    | nd     |
| 1,2,4-Trichlorobenzene        | 0.12   | 0.6    | nd     |
| 1,1,1-Trichloroethane         | 0.09   | 0.5    | nd     |
| 1,1,2-Trichloroethane         | 0.09   | 0.5    | nd     |
| Trichloroethylene             | 0.16   | 0.8    | nd     |
| Trichlorofluoromethane        | 0.10   | 0.5    | nd     |
| 1,2,3-Trichloropropane        | 0.14   | 0.7    | nd     |
| 1,2,4-Trimethylbenzene        | 0.17   | 0.9    | nd     |
| 1,3,5-Trimethylbenzene        | 0.26   | 1.3    | nd     |
| Vinyl acetate                 | 0.11   | 0.6    | nd     |
| Vinyl Chloride (chloroethene) | 0.11   | 0.6    | nd     |
| m & p-Xylene                  | 0.60   | 3.0    | nd     |
| o-Xvlene                      | 0.29   | 1.5    | nd     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|             | Quality Control Data                             |                                                                 |
|-------------|--------------------------------------------------|-----------------------------------------------------------------|
| QC Limits   |                                                  |                                                                 |
| % Recovery  |                                                  |                                                                 |
| Lower-Upper |                                                  |                                                                 |
| 80 -130     | 100.3%                                           |                                                                 |
| 80 - 120    | 99.0%                                            |                                                                 |
| 80 - 130    | 94.3%                                            |                                                                 |
|             | % Recovery<br>Lower-Upper<br>80 -130<br>80 - 120 | QC Limits % Recovery Lower-Upper  80 -130 100.3% 80 - 120 99.0% |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

**USEPA 8260** 

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/21/13

BATCH #: \$VOC-W-77! LN05646 LN05647 LN05660

LAB SAMPLE I.D.: LN05646 UNIT: ug/L

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|-----|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 32.8 | 109 | 30.0                   | 32.6 | 109  | 0.0%   | 61-145          | 14%       |
| Benzene            | ND               | 30.0          | 30.3 | 101 | 30.0                   | 30.0 | 100  | 1.0 %  | 76-127          | 11%       |
| Trichloroethylene  | ND               | 30.0          | 31.5 | 105 | 30.0                   | 31.2 | 104  | 0.96 % | 71-120          | 14%       |
| Toluene            | ND               | 30.0          | 32.5 | 108 | 30.0                   | 32.3 | 108  | 0.0%   | 76-125          | 13%       |
| Chlorobenzene      | ND               | 30.0          | 36.3 | 121 | 30.0                   | 36.0 | 120  | 0.83 % | 75-130          | 13%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/21/13

**ANALYTICAL METHOD:** 

**USEPA 8260** 

SUPPLY SOURCE:

DATE OF SOURCE:

LAB LCS I.D.:

Q8087

**ANALYTICAL METHOD:** 

LOT NUMBER:

UNIT:

ug/L

|                       | 1          | T                  |            |                |
|-----------------------|------------|--------------------|------------|----------------|
| ANALYTE               | LCS RESULT | TRUE VALUE<br>ug/L | % RECOVERY | Advisory Range |
| 1,1,2-Trichloroethane | 32.2       | 30                 | 107.3      | 70 - 130       |
| 1,2-Dichloroethane    | 29.8       | 30                 | 99.3       | 70 - 130       |
| 1,4-Dichlorobenzene   | 31.6       | 30                 | 105.3      | 70 - 130       |
| Benzene               | 26.6       | 30                 | 88.7       | 70 - 130       |
| Bromoform             | 31.9       | 30                 | 106.3      | 70 - 130       |
| Carbon Tetrachloride  | 23.6       | 30                 | 78.7       | 70 - 130       |
| Tetrachloroethylene   | 27.5       | 30                 | 91.7       | 70 - 130       |
| Trichloroethylene     | 27.7       | 30                 | 92.3       | 70 - 130       |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            |                    |            |                |
|                       |            | <u></u>            |            |                |

Report of GC/MS Analysis for Purgeable Volatile Organics FPA SW-846 Method 8260

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Water

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05738           | 5/15/2013    | 5/15/2013 | 5/21/2013 | QCTB               |
| LN05739           | 5/15/2013    | 5/15/2013 | 5/21/2013 | QCEB               |
| LN05752           | 5/15/2013    | 5/15/2013 | 5/21/2013 | QCFB               |
| <del></del>       |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                               | MDL          | PQL    | LN05738<br>Amount | LN05739<br>Amount | LN05752<br>Amount |
|-----------------------------------------|--------------|--------|-------------------|-------------------|-------------------|
| Compoundo                               | (ug/L)       | (ug/L) | (ug/L)            | (ug/L)            | (ug/L)            |
| Acetone                                 | 0.58         | 2.9    | nd                | nd                | nd                |
| tert-Amyl methyl ether (TAME)           | 0.08         | 0.4    | nd                | nd                | nd                |
| Benzene                                 | 0.12         | 0.6    | nd                | nd                | nd                |
| Bromobenzene                            | 0.10         | 0.5    | nd                | nd                | nd                |
| Bromochloromethane                      | 0.09         | 0.5    | nd                | nd                | nd                |
| Bromodichloromethane                    | 0.10         | 0.5    | nd                | nd                | nd                |
| Bromoform                               | 0.10         | 0.5    | nd                | nd                | nd                |
| Bromomethane                            | 0.41         | 2.1    | nd                | nd                | nd                |
| Methyl ethyl ketone (MEK)               | 0.17         | 0.9    | nd                | nd                | nd                |
| tert-Butyl alcohol (TBA)                | 8.4          | 42.0   | nd                | nd                | nd                |
| Butylbenzene                            | 0.21         | 1.1    | nd                | nd                | nd                |
| sec-Butylbenzene                        | 0.21         | 1.1    | nd                | nd                | nd                |
| tert-Butylbenzene                       | 0.18         | 0.9    | nd                | nd                | nd                |
| tert-Butyl ethyl ether (ETBE)           | 0.14         | 0.7    | nd                | nd                | nd                |
| Carbon disulfide                        | 0.30         | 1.5    | nd                | nd                | nd                |
| Carbon Tetrachloride                    | 0.09         | 0.5    | nd                | nd                | nd                |
| Chlorobenzene                           | 0.18         | 0.9    | nd                | nd                | nd                |
| Chloroethane                            | 0.17         | 0.9    | nd                | nd                | nd                |
| 2-Chloroethyl vinyl ether               | 0.25         | 1.3    | nd                | nd                | nd                |
| Chloroform                              | 0.10         | 0.5    | nd                | nd                | nd                |
| Chloromethane                           | 0.13         | 0.7    | nd                | nd                | nd                |
| 2-Chlorotoluene                         | 0.23         | 1.2    | nd                | nd                | nd                |
| 4-Chlorotoluene                         | 0.25         | 1.3    | nd                | nd                | nd                |
| Dibromochloromethane                    | 0.11         | 0.6    | nd                | nd                | nd                |
| 1,2-Dibromo-3-chloropropane             | 0.13         | 0.7    | nd                | nd                | nd                |
| 1,2-Dibromoethane                       | 0.10         | 0.5    | nd                | nd                | nd                |
| Dibromomethane                          | 0.10         | 0.5    | nd                | nd                | nd                |
| 1,2-Dichlorobenzene                     | 0.11         | 0.6    | nd                | nd                | nd                |
| 1,3-Dichlorobenzene                     | 0.10         | 0.5    | nd                | nd                | nd                |
| 1,4-Dichlorobenzene                     | 0.15         | 0.8    | nd                | nd                | nd                |
| Dichlorodifluoromethane                 | 0.46         | 2.3    | nd                | nd                | nd                |
| 1,1-Dichloroethane                      | 0.10         | 0.5    | nd                | nd                | nd                |
| 1,2-Dichloroethane                      | 0.13         | 0.7    | nd                | nd                | nd                |
| 1,1-Dichloroethene                      | 0.13         | 0.6    | nd                | nd                | nd                |
| cis-1,2-Dichloroethene                  | 0.09         | 0.5    | nd                | nd                | nd                |
| trans-1,2-Dichloroethene                | 0.10         | 0.5    | nd                | nd                | nd                |
| 1,2-Dichloropropane                     | 0.11         | 0.6    | nd                | nd                | nd                |
|                                         | 0.10         | 0.5    | nd                | nd                | nd                |
| 1,3-Dichloropropane                     | 0.10         | 0.6    | nd                | nd                | nd                |
| 2,2-Dichloropropane 1,1-Dichloropropene | 0.12         | 1.0    | nd                | nd                | nd                |
|                                         | 0.20<br>0.12 | 0.6    | nd                | nd                | nd                |
| cis-1,3-Dichloropropene                 | 0.12         | 0.6    | nd<br>nd          | nd<br>nd          | nd                |
| trans-1,3-Dichloropropene               |              |        |                   |                   |                   |
| Diisopropyl ether (DIPE)                | 0.15         | 0.8    | nd<br>nd          | nd<br>nd          | nd                |
| Ethylbenzene                            | 0.27         | 1.4    | nd                | nd<br>nd          | nd<br>nd          |
| Hexachlorobutadiene                     | 0.13         | 0.7    | nd                | nd                | nd                |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Water

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05738           | 5/15/2013    | 5/15/2013 | 5/21/2013 | QCTB               |
| LN05739           | 5/15/2013    | 5/15/2013 | 5/21/2013 | QCEB               |
| LN05752           | 5/15/2013    | 5/15/2013 | 5/21/2013 | QCFB               |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/L) | PQL    | LN05738<br>Amount | LN05739<br>Amount | LN05752<br>Amount |
|-------------------------------|---------------|--------|-------------------|-------------------|-------------------|
|                               | (ug/L)        | (ug/L) | (ug/L)            | (ug/L)            | (ug/L)            |
| 2-Hexanone                    | 0.07          | 0.4    | nd                | nd                | nd                |
| Isopropylbenzene              | 0.20          | 1.0    | nd                | nd                | nd                |
| p-Isopropyltoluene            | 0.25          | 1.3    | nd                | nd                | nd                |
| Methyl-t-butyl ether (MTBE)   | 0.14          | 0.7    | nd                | nd                | nd                |
| Methylene chloride            | 0.18          | 0.9    | nd                | nd                | nd                |
| lodomethane                   | 0.11          | 0.6    | nd                | nd                | nd                |
| Methyl isobutyl ketone (MIBK) | 0.09          | 0.5    | nd                | nd                | nd                |
| Naphthalene                   | 0.38          | 1.9    | nd                | nd                | nd                |
| Propylbenzene                 | 0.25          | 1.3    | nd                | nd                | nd                |
| Styrene                       | 0.24          | 1.2    | nd                | nd                | nd                |
| 1,1,1,2-Tetrachloroethane     | 0.10          | 0.5    | nd                | nd                | nd                |
| 1,1,2,2-Tetrachloroethane     | 0.10          | 0.5    | nd                | nd                | nd                |
| Tetrachloroethylene           | 0.10          | 0.5    | nd                | nd                | nd                |
| Toluene                       | 0.29          | 1.5    | nd                | nd                | nd                |
| 1,2,3-Trichlorobenzene        | 0.17          | 0.9    | nd                | nd                | nd                |
| 1,2,4-Trichlorobenzene        | 0.12          | 0.6    | nd                | nd                | nd                |
| 1,1,1-Trichloroethane         | 0.09          | 0.5    | nd                | nd                | nd                |
| 1,1,2-Trichloroethane         | 0.09          | 0.5    | nd                | nd                | nd                |
| Trichloroethylene             | 0.16          | 0.8    | nd                | nd                | nd                |
| Trichlorofluoromethane        | 0.10          | 0.5    | nd                | nd                | nd                |
| 1,2,3-Trichloropropane        | 0.14          | 0.7    | nd                | nd                | nd                |
| 1,2,4-Trimethylbenzene        | 0.17          | 0.9    | nd                | nd                | nd                |
| 1,3,5-Trimethylbenzene        | 0.26          | 1.3    | nd                | nd                | nd                |
| Vinyl acetate                 | 0.11          | 0.6    | nd                | nd                | nd                |
| Vinyl Chloride (Chloroethene) | 0.11          | 0.6    | nd                | nd                | nd                |
| m & p-Xylene                  | 0.60          | 3.0    | nd                | nd                | nd                |
| o-Xylene                      | 0.29          | 1.5    | nd                | nd                | nd                |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |                      | Quality Contr | rol Data |        |
|----------------------------|----------------------|---------------|----------|--------|
| Surrogates                 | QC Limits % Recovery |               |          |        |
| 30 (ug/L each)             | Lower-Upper          |               |          |        |
| SURR: Bromofluorobenzene   | 80 - 130             | 100.0%        | 100.3%   | 100.0% |
| SURR: Dibromofluoromethane | 80 - 120             | 98.0%         | 97.3%    | 97.7%  |
| SURR: Toluene-d8           | 80 - 130             | 97.0%         | 97.0%    | 97.0%  |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/14/2013    | 5/14/2013 | 5/21/2013 | Method Blank       |
|                   |              | =.=.      |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   | <u> </u>     |           |           |                    |

|                               |        |        | Blank  |
|-------------------------------|--------|--------|--------|
| Compounds                     | MDL    | PQL    | Amount |
| ·                             | (ug/L) | (ug/L) | ug/L   |
|                               |        |        |        |
| Acetone                       | 0.58   | 2.9    | nd     |
| tert-Amyl methyl ether (TAME) | 0.08   | 0.4    | nd     |
| Benzene                       | 0.12   | 0.6    | nd     |
| Bromobenzene                  | 0.10   | 0.5    | nd     |
| Bromochloromethane            | 0.09   | 0.5    | nd     |
| Bromodichloromethane          | 0.10   | 0.5    | nd     |
| Bromoform                     | 0.10   | 0.5    | nd     |
| Bromomethane                  | 0.41   | 2.1    | nd     |
| 2-Butanone (MEK)              | 0.17   | 0.9    | nd     |
| tert-Butyl alcohol (TBA)      | 8.4    | 42.0   | nd     |
| n-Butylbenzene                | 0.21   | 1.1    | nd     |
| sec-Butylbenzene              | 0.21   | 1.1    | nd     |
| tert-Butylbenzene             | 0.18   | 0.9    | nd     |
| tert-Butyl ethyl ether (ETBE) | 0.14   | 0.7    | nd     |
| Carbon disulfide              | 0.30   | 1.5    | nd     |
| Carbon Tetrachloride          | 0.09   | 0.5    | nd     |
| Chlorobenzene                 | 0.18   | 0.9    | nd     |
| Chloroethane                  | 0.17   | 0.9    | nd     |
| 2-Chloroethyl vinyl ether     | 0.25   | 1.3    | nd     |
| Chloroform                    | 0.10   | 0.5    | nd     |
| Chloromethane                 | 0.13   | 0.7    | nd     |
| 2-Chiorotoluene               | 0.23   | 1.2    | nd     |
| 4-Chlorotoluene               | 0.25   | 1.3    | nd     |
| Dibromochloromethane          | 0.11   | 0.6    | nd     |
| 1,2-Dibromo-3-chloropropane   | 0.13   | 0.7    | nd     |
| 1,2-Dibromoethane (EDB)       | 0.10   | 0.5    | nd     |
| Dibromomethane                | 0.10   | 0.5    | nd     |
| 1,2-Dichlorobenzene           | 0.11   | 0.6    | nd     |
| 1,3-Dichlorobenzene           | 0.10   | 0.5    | nd     |
| 1,4-Dichlorobenzene           | 0.15   | 0.8    | nd     |
| Dichlorodifluoromethane       | 0.46   | 2.3    | nd     |
| 1,1-Dichloroethane            | 0.10   | 0.5    | nd     |
| 1,2-Dichloroethane            | 0.13   | 0.7    | nd     |
| 1,1-Dichloroethene            | 0.11   | 0.6    | nd     |
| cis-1,2-Dichloroethene        | 0.09   | 0.5    | nd     |
| trans-1,2-Dichloroethene      | 0.10   | 0.5    | nd     |
| 1,2-Dichloropropane           | 0.11   | 0.6    | nd     |
| 1,3-Dichloropropane           | 0.10   | 0.5    | nd     |
| 2,2-Dichloropropane           | 0.12   | 0.6    | nd     |
| 1,1-Dichloropropene           | 0.20   | 1.0    | nd     |
| cis-1,3-Dichloropropene       | 0.12   | 0.6    | nd     |
| trans-1,3-Dichloropropene     | 0.08   | 0.4    | nd     |
| Diisopropyl ether (DIPE)      | 0.15   | 0.8    | nd     |
| Ethylbenzene                  | 0.27   | 1.4    | nd     |
|                               |        |        |        |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

|                                             |              | Date       | Date        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|--------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemistry Log No.                           | Date Sampled |            | Analyzed    | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Blank                                       | 5/14/2013    | 5/14/2013  | 5/21/2013   | Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>.</u>                                    |              |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | <u> </u>     |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | +            |            |             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                             |              |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | <del></del>  |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del>~</del>                                |              |            |             | to the state of th |
|                                             |              |            | Blank       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compounds                                   | MDL          | PQL        | Amount      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | (ug/L)       | (ug/L)     | ug/L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hexachlorobutadiene                         | 0.13         | 0.7        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Hexanone                                  | 0.07         | 0.4        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sopropylbenzene                             | 0.20         | 1.0        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sopropyltoluene<br>o-Isopropyltoluene       | 0.20         | 1.3        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl-t-butyl ether (MTBE)                 | 0.14         | 0.7        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methylene chloride                          | 0.14         | 0.7        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl iodide (lodomethane)                 | 0.11         | 0.6        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Methyl-2-pentanone (MIBK)                 | 0.09         | 0.5        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Naphthalene                                 | 0.38         | 1.9        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Propylbenzene                               | 0.25         | 1.3        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Styrene (Phenylethylene)                    | 0.24         | 1.2        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1,2-Tetrachloroethane                   | 0.10         | 0.5        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2,2-Tetrachloroethane                   | 0.10         | 0.5        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetrachloroethylene                         | 0.10         | 0.5        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene                                     | 0.10         | 1.5        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | 0.23         | 0.9        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-Trichlorobenzene                      | 0.17         | 0.6        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,4-Trichlorobenzene                      | 0.12         | 0.5        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1-Trichloroethane                       | 0.09         | 0.5        | nd          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2-Trichloroethane                       |              |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichloroethylene<br>Trichlorofluoromethane | 0.16         | 0.8        | nd<br>nd    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | 0.10         | 0.5        | nd<br>= d   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-Trichloropropane                      | 0.14         | 0.7        | nd<br>nd    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,4-Trimethylbenzene                      | 0.17         | 0.9        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,3,5-Trimethylbenzene                      | 0.26<br>0.11 | 1.3<br>0.6 | nd<br>nd    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vinyl acetate                               |              |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vinyl Chloride (chloroethene)               | 0.11<br>0.60 | 0.6<br>3.0 | nd<br>nd    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m & p-Xylene<br>o-Xylene                    | 0.60         | 3.0<br>1.5 | nd<br>nd    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MDL - Method Detection Limit                | 3.20         |            |             | ration above MDL below PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PQL - Practical Quantitation Limi           | it (5xMDL)   |            |             | tected; below detection limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                             | ,            |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |              |            | 0 11 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | QC Limits    |            | Quality Cor | IIIOI DĂĬĀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>Surrogates</u>                           | % Recovery   |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 (ug/L each)                              | Lower-Upper  |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |              |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURR: Bromofluorobenzene                    | 80 -130      |            | 100.3%      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURR: Dibromofluoromethane                  | 80 - 120     |            | 99.0%       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURR: Toluene-d8                            | 80 - 130     |            | 94.3%       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

**USEPA 8260** 

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/21/13

BATCH #: \$VOC-W-77! LN05738 LN05739 LN05752

LAB SAMPLE I.D.: UNIT: ug/L LN05646

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|-----|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 32.8 | 109 | 30.0                   | 32.6 | 109  | 0.0%   | 61-145          | 14%       |
| Benzene            | ND               | 30.0          | 30.3 | 101 | 30.0                   | 30.0 | 100  | 1.0 %  | 76-127          | 11%       |
| Trichloroethylene  | ND               | 30.0          | 31.5 | 105 | 30.0                   | 31.2 | 104  | 0.96 % | 71-120          | 14%       |
| Toluene            | ND               | 30.0          | 32.5 | 108 | 30.0                   | 32.3 | 108  | 0.0%   | 76-125          | 13%       |
| Chlorobenzene      | ND               | 30.0          | 36.3 | 121 | 30.0                   | 36.0 | 120  | 0.83 % | 75-130          | 13%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/21/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LOT NUMBER:

LAB LCS I.D.: UNIT:

Q8087 ug/L

ANALYTICAL METHOD:

DATE OF SOURCE:

|                       | 1          | r          | T          | T              |
|-----------------------|------------|------------|------------|----------------|
| ANALYTE               | LCS RESULT | TRUE VALUE | % RECOVERY | Advisory Range |
| 1,1,2-Trichloroethane | 32.2       | 30         | 107.3      | 70 - 130       |
| 1,2-Dichloroethane    | 29.8       | 30         | 99.3       | 70 - 130       |
| 1,4-Dichlorobenzene   | 31.6       | 30         | 105.3      | 70 - 130       |
| Benzene               | 26.6       | 30         | 88.7       | 70 - 130       |
| Bromoform             | 31.9       | 30         | 106.3      | 70 - 130       |
| Carbon Tetrachloride  | 23.6       | 30         | 78.7       | 70 - 130       |
| Tetrachloroethylene   | 27.5       | 30         | 91.7       | 70 - 130       |
| Trichloroethylene     | 27.7       | 30         | 92.3       | 70 - 130       |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            | <u> </u>       |
|                       |            |            |            |                |
|                       |            |            |            | <u> </u>       |
|                       |            |            |            |                |
|                       |            |            |            |                |
|                       |            |            |            |                |

Reviewed by: R. Gentallen. //9/13

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Water

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05824           | 5/16/2013    | 5/17/2013 | 5/22/2013 | QCFB               |
| LN05825           | 5/16/2013    | 5/17/2013 | 5/22/2013 | QCEB               |
| LN05826           | 5/16/2013    | 5/17/2013 | 5/22/2013 | QCTB               |
|                   |              |           |           |                    |
| ,                 |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | LN05824<br>Amount<br>(ug/L) | LN05825<br>Amount<br>(ug/L) | LN05826<br>Amount<br>(ug/L) |
|-------------------------------|---------------|---------------|-----------------------------|-----------------------------|-----------------------------|
| Acetone                       | 0.58          | 2.9           | nd                          | nd                          | nd                          |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Benzene                       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| Bromobenzene                  | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromochloromethane            | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Bromodichloromethane          | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromoform                     | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromomethane                  | 0.41          | 2.1           | nd                          | nd                          | nd                          |
| Methyl ethyl ketone (MEK)     | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                          | nd                          | nd                          |
| Butylbenzene                  | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| tert-Butylbenzene             | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                          | nd                          | nd                          |
| Carbon disulfide              | 0.30          | 1.5           | nd                          | nd                          | nd                          |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Chlorobenzene                 | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| Chloroethane                  | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Chloroform                    | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Chloromethane                 | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                          | nd                          | nd                          |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Dibromochloromethane          | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 1,2-Dibromoethane             | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Dibromomethane                | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,4-Dichlorobenzene           | 0.15          | 0.8           | nd                          | nd                          | nd                          |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nđ                          | nd                          | nd                          |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                          | nd                          | nd                          |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Diisopropyl ether (DIPE)      | 0.15          | 0.8           | nd                          | nd                          | nd                          |
| Ethylbenzene                  | 0.27          | 1.4           | nd                          | nd                          | nd                          |
| Hexachlorobutadiene           | 0.13          | 0.7           | nd                          | nd                          | nd                          |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Page 2 of 2 Sample Matrix: Water

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05824           | 5/16/2013    | 5/17/2013 | 5/22/2013 | QCFB               |
| LN05825           | 5/16/2013    | 5/17/2013 | 5/22/2013 | QCEB               |
| LN05826           | 5/16/2013    | 5/17/2013 | 5/22/2013 | QCTB               |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

|                               |        |        | LN05824 | LN05825 | LN05826 |
|-------------------------------|--------|--------|---------|---------|---------|
| Compounds                     | MDL    | PQL    | Amount  | Amount  | Amount  |
|                               | (ug/L) | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)  |
| - 44                          |        |        |         |         |         |
| 2-Hexanone                    | 0.07   | 0.4    | nd      | nd      | nd      |
| Isopropylbenzene              | 0.20   | 1.0    | nd      | nd      | nd      |
| p-Isopropyltoluene            | 0.25   | 1.3    | nd      | nd      | nd      |
| Methyl-t-butyl ether (MTBE)   | 0.14   | 0.7    | nd      | nd      | nd      |
| Methylene chloride            | 0.18   | 0.9    | nd      | nd      | nd      |
| Iodomethane                   | 0.11   | 0.6    | nd      | nd      | nd      |
| Methyl isobutyl ketone (MIBK) | 0.09   | 0.5    | nđ      | nd      | nd      |
| Naphthalene                   | 0.38   | 1.9    | nď      | nd      | nd      |
| Propylbenzene                 | 0.25   | 1.3    | nd      | nd      | nd      |
| Styrene                       | 0.24   | 1.2    | nd      | nd      | nd      |
| 1,1,1,2-Tetrachloroethane     | 0.10   | 0.5    | nd      | nd      | nd      |
| 1,1,2,2-Tetrachloroethane     | 0.10   | 0.5    | nd      | nd      | nd      |
| Tetrachloroethylene           | 0.10   | 0.5    | nd      | nd      | nd      |
| Toluene                       | 0.29   | 1.5    | nd      | nd      | nd      |
| 1,2,3-Trichlorobenzene        | 0.17   | 0.9    | nd      | nd      | nđ      |
| 1,2,4-Trichlorobenzene        | 0.12   | 0.6    | nd      | nd      | nd      |
| 1,1,1-Trichloroethane         | 0.09   | 0.5    | nd      | nd      | nd      |
| 1,1,2-Trichloroethane         | 0.09   | 0.5    | nd      | nd      | nd      |
| Trichloroethylene             | 0.16   | 0.8    | nd      | nd      | nd      |
| Trichlorofluoromethane        | 0.10   | 0.5    | nd      | nd      | nd      |
| 1,2,3-Trichloropropane        | 0.14   | 0.7    | nd      | nd      | nd      |
| 1,2,4-Trimethylbenzene        | 0.17   | 0.9    | nd      | nd      | nd      |
| 1,3,5-Trimethylbenzene        | 0.26   | 1.3    | nd      | nd      | nd      |
| Vinyl acetate                 | 0.11   | 0.6    | nd      | nd      | nd      |
| Vinyl Chloride (Chloroethene) | 0.11   | 0.6    | nd      | nd      | nd      |
| m & p-Xylene                  | 0.60   | 3.0    | nd      | nd      | nd      |
| o-Xylene                      | 0.29   | 1.5    | nd      | nd      | nd      |
| o rigitality                  | 0.20   | 1.0    | 110     | 110     | 110     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |             | Quality Contro | ol Data |        |   |
|----------------------------|-------------|----------------|---------|--------|---|
| 0                          | QC Limits   |                |         |        |   |
| Surrogates                 | % Recovery  |                |         |        |   |
| 30 (ug/L each)             | Lower-Upper |                |         |        |   |
| SURR: Bromofluorobenzene   | 80 - 130    | 100.3%         | 97.7%   | 100.3% |   |
| SURR: Dibromofluoromethane | 80 - 120    | 99.3%          | 99.7%   | 100.3% |   |
| SURR: Toluene-d8           | 80 - 130    | 96.7%          | 96.0%   | 95.0%  |   |
|                            |             | <del></del>    |         |        | _ |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

| *****             |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/10/2013    | 5/14/2013 | 5/22/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | Blank<br>Amount<br>ug/L |
|-------------------------------|---------------|---------------|-------------------------|
| Acetone                       | 0.58          | 2.9           | nd                      |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                      |
| Benzene                       | 0.12          | 0.6           | nd                      |
| Bromobenzene                  | 0.10          | 0.5           | nd                      |
| Bromochloromethane            | 0.09          | 0.5           | nd                      |
| Bromodichloromethane          | 0.10          | 0.5           | nd                      |
| Bromoform                     | 0.10          | 0.5           | nd                      |
| Bromomethane                  | 0.41          | 2.1           | nd                      |
| 2-Butanone (MEK)              | 0.17          | 0.9           | nd                      |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                      |
| n-Butylbenzene                | 0.21          | 1.1           | nd                      |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                      |
| tert-Butylbenzene             | 0.18          | 0.9           | nd                      |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                      |
| Carbon disulfide              | 0.30          | 1.5           | nd                      |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                      |
| Chlorobenzene                 | 0.18          | 0.9           | nd                      |
| Chloroethane                  | 0.17          | 0.9           | nd                      |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nd                      |
| Chloroform                    | 0.10          | 0.5           | nd                      |
| Chloromethane                 | 0.13          | 0.7           | nd                      |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                      |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                      |
| Dibromochloromethane          | 0.11          | 0.6           | nd                      |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | nd                      |
| 1,2-Dibromoethane (EDB)       | 0.10          | 0.5           | nd                      |
| Dibromomethane                | 0.10          | 0.5           | nd                      |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                      |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                      |
| 1,4-Dichlorobenzene           | 0.15          | 0.8           | nd                      |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                      |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                      |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                      |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nd                      |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                      |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                      |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                      |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                      |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                      |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                      |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                      |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                      |
| Diisopropyl ether (DIPE)      | 0.15          | 0.8           | nd                      |
| Ethylbenzene                  | 0.27          | 1.4           | nd                      |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

| Chamista: Las Na                 | Date Sampled | Date<br>Received | Date<br>Analyzed                                 | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|--------------|------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemistry Log No.                |              |                  |                                                  | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Blank                            | 5/10/2013    | 5/14/2013        | 5/22/2013                                        | Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | +            |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del>                      |              |                  |                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                  |              |                  | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del>                      |              |                  |                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                  |              |                  | <u> </u>                                         | The state of the s |
|                                  |              |                  | Blank                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compounds                        | MDL          | PQL              | Amount                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | (ug/L)       | (ug/L)           | ug/L                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lexachlorobutadiene              | 0.13         | 0.7              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ?-Hexanone                       | 0.07         | 0.4              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sopropylbenzene                  | 0.20         | 1.0              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o-Isopropyltoluene               | 0.25         | 1.3              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /lethyl-t-butyl ether (MTBE)     | 0.14         | 0.7              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methylene chloride               | 0.18         | 0.9              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl iodide (Iodomethane)      | 0.11         | 0.6              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| l-Methyl-2-pentanone (MIBK)      | 0.09         | 0.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Naphthalene                      | 0.38         | 1.9              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Propylbenzene                    | 0.25         | 1.3              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Styrene (Phenylethylene)         | 0.24         | 1.2              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1,2-Tetrachloroethane        | 0.10         | 0.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2,2-Tetrachloroethane        | 0.10         | 0.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 「etrachloroethylene              | 0.10         | 0.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Foluene Foluene                  | 0.29         | 1.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-Trichlorobenzene           | 0.17         | 0.9              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,4-Trichlorobenzene           | 0.12         | 0.6              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I,1,1-Trichloroethane            | 0.09         | 0.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,1,2-Trichloroethane             | 0.09         | 0.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frichloroethylene                | 0.16         | 8.0              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frichlorofluoromethane           | 0.10         | 0.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,2,3-Trichloropropane            | 0.14         | 0.7              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,4-Trimethylbenzene           | 0.17         | 0.9              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I,3,5-Trimethylbenzene           | 0.26         | 1.3              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /inyl acetate                    | 0.11         | 0.6              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /inyl Chloride (chloroethene)    | 0.11         | 0.6              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n & p-Xylene                     | 0.60         | 3.0              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o-Xylené                         | 0.29         | 1.5              | nd                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MDL - Method Detection Limit     | ,            | ·                | J - Concentration                                | on above MDL below PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| QL - Practical Quantitation Limi | t (5xMDL)    |                  |                                                  | ed; below detection limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  |              |                  | Ouglity Control                                  | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  | QC Limits    |                  | Quality Control                                  | <u>Data</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surrogatee                       |              |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogates                       | % Recovery   |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 (ug/L each)                   | Lower-Upper  |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLIDD: Bromefluershares          | on 400       |                  | 104 79/                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURR: Bromofluorobenzene         | 80 -130      |                  | 104.7%                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURR: Dibromofluoromethane       | 80 - 120     |                  | 101.0%                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

96.0%

Comment:

Analyst: Bryan Tiu

SURR: Toluene-d8

80 - 130

Reviewed by: Rose Gentallan

**USEPA 8260** 

### **Quality Assurance Report**

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/22/13

BATCH #: \$VOC-W-77! LN05824 LN05825 LN05826

LAB SAMPLE I.D.: LN05754 UNIT: ug/L

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 28.5 | 95.0 | 30.0                   | 31.4 | 105  | 10 %   | 61-145          | 14%       |
| Benzene            | 0.714            | 30.0          | 30.1 | 98.0 | 30.0                   | 32.0 | 104  | 5.9 %  | 76-127          | 11%       |
| Trichloroethylene  | ND               | 30.0          | 30.7 | 102  | 30.0                   | 32.0 | 107  | 4.8 %  | 71-120          | 14%       |
| Toluene            | ND               | 30.0          | 30.8 | 103  | 30.0                   | 31.9 | 106  | 2.9 %  | 76-125          | 13%       |
| Chlorobenzene      | ND               | 30.0          | 32.9 | 110  | 30.0                   | 33.2 | 111  | 0.90 % | 75-130          | 13%       |

ANALYTICAL METHOD:

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/22/13

ANALYTICAL METHOD:

Q8087

**USEPA 8260** 

SUPPLY SOURCE:

LOT NUMBER:

LAB LCS I.D.: UNIT: ug/L

DATE OF SOURCE:

|                       |                                        |                                       |            | T              |
|-----------------------|----------------------------------------|---------------------------------------|------------|----------------|
| ANALYTE               | LCS RESULT<br>ug/L                     | TRUE VALUE<br>ug/L                    | % RECOVERY | Advisory Range |
| 1,1,2-Trichloroethane | 32.3                                   | 30                                    | 107.7      | 70 - 130       |
| 1,2-Dichloroethane    | 30.3                                   | 30                                    | 101.0      | 70 - 130       |
| 1,4-Dichlorobenzene   | 30.6                                   | 30                                    | 102.0      | 70 - 130       |
| Benzene               | 27.6                                   | 30                                    | 92.0       | 70 - 130       |
| Bromoform             | 35.3                                   | 30                                    | 117.7      | 70 - 130       |
| Carbon Tetrachloride  | 24.8                                   | 30                                    | 82.7       | 70 - 130       |
| Tetrachloroethylene   | 29.9                                   | 30                                    | 99.7       | 70 - 130       |
| Trichloroethylene     | 29                                     | 30                                    | 96.7       | 70 - 130       |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        | · · · · · · · · · · · · · · · · · · · |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       |                                        |                                       |            |                |
|                       | ** ** ** · · · · · · · · · · · · · · · |                                       | <u> </u>   | <u>l</u>       |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Water

PROJECT: FIGUEROA PUMPING STATION

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05901           | 5/20/2013    | 5/20/2013 | 5/22/2013 | QCEB               |
| LN05902           | 5/20/2013    | 5/20/2013 | 5/22/2013 | QCFB               |
| LN05903           | 5/20/2013    | 5/20/2013 | 5/22/2013 | QCTB               |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | LN05901<br>Amount<br>(ug/L) | LN05902<br>Amount<br>(ug/L) | LN05903<br>Amount<br>(ug/L) |
|-------------------------------|---------------|---------------|-----------------------------|-----------------------------|-----------------------------|
| Acetone                       | 0.58          | 2.9           | nd                          | nd                          | nd                          |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Benzene                       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| Bromobenzene                  | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromochloromethane            | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Bromodichloromethane          | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromoform                     | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Bromomethane                  | 0.41          | 2.1           | nd                          | nd                          | nd                          |
| Methyl ethyl ketone (MEK)     | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                          | nd                          | nd                          |
| Butylbenzene                  | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                          | nd                          | nd                          |
| tert-Butylbenzene             | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                          | nd                          | nd                          |
| Carbon disulfide              | 0.30          | 1.5           | nd                          | nd                          | nd                          |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| Chlorobenzene                 | 0.18          | 0.9           | nd                          | nd                          | nd                          |
| Chloroethane                  | 0.17          | 0.9           | nd                          | nd                          | nd                          |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Chloroform                    | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Chloromethane                 | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                          | nd                          | nd                          |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                          | nd                          | nd                          |
| Dibromochloromethane          | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | nď                          | nd                          | nd                          |
| 1,2-Dibromoethane             | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| Dibromomethane                | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,4-Dichlorobenzene           | 0.15          | 0.8           | nd                          | nd                          | nd                          |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                          | nd                          | nd                          |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                          | nd                          | nd                          |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                          | nd                          | nd                          |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                          | nd                          | nd                          |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                          | nd                          | nd                          |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                          | nd                          | nd                          |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                          | nd                          | nd                          |
| Diisopropyl ether (DIPE)      | 0.15          | 8.0           | nd                          | nd                          | nd                          |
| Ethylbenzene                  | 0.27          | 1.4           | nd                          | nd                          | nd                          |
| Hexachlorobutadiene           | 0.13          | 0.7           | nd                          | nd                          | nď                          |
|                               |               |               |                             |                             |                             |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260

**PROJECT: FIGUEROA PUMPING STATION** 

Page 2 of 2 Sample Matrix: Water

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| LN05901           | 5/20/2013    | 5/20/2013 | 5/22/2013 | QCEB               |
| LN05902           | 5/20/2013    | 5/20/2013 | 5/22/2013 | QCFB               |
| LN05903           | 5/20/2013    | 5/20/2013 | 5/22/2013 | QCTB               |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
| <u> </u>          |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL    | PQL    | LN05901<br>Amount | LN05902<br>Amount | LN05903<br>Amount |
|-------------------------------|--------|--------|-------------------|-------------------|-------------------|
|                               | (ug/L) | (ug/L) | (ug/L)            | (ug/L)            | (ug/L)            |
| 2-Hexanone                    | 0.07   | 0.4    | nď                | nd                | nd                |
| Isopropylbenzene              | 0.20   | 1.0    | nd                | nd                | nd                |
| p-Isopropyltoluene            | 0.25   | 1.3    | nd                | nd                | nd                |
| Methyl-t-butyl ether (MTBE)   | 0.14   | 0.7    | nd                | nd                | nd                |
| Methylene chloride            | 0.18   | 0.9    | nd                | nd                | nd                |
| Iodomethane                   | 0.11   | 0.6    | nd                | nd                | nd                |
| Methyl isobutyl ketone (MIBK) | 0.09   | 0.5    | nd                | nd                | nd                |
| Naphthalene                   | 0.38   | 1.9    | nd                | nd                | nd                |
| Propylbenzene                 | 0.25   | 1.3    | nd                | nd                | nd                |
| Styrene                       | 0.24   | 1.2    | nd                | nd                | nd                |
| 1,1,1,2-Tetrachloroethane     | 0.10   | 0.5    | nd                | nd                | nd                |
| 1,1,2,2-Tetrachloroethane     | 0.10   | 0.5    | nd                | nd                | nd                |
| Tetrachloroethylene           | 0.10   | 0.5    | nd                | nd                | nd                |
| Toluene                       | 0.29   | 1.5    | nd                | nd                | nd                |
| 1,2,3-Trichlorobenzene        | 0.17   | 0.9    | nd                | nd                | nd                |
| 1,2,4-Trichlorobenzene        | 0.12   | 0.6    | nd                | nd                | nd                |
| 1,1,1-Trichloroethane         | 0.09   | 0.5    | nd                | nd                | nd                |
| 1,1,2-Trichloroethane         | 0.09   | 0.5    | nd                | nd                | nd                |
| Trichloroethylene             | 0.16   | 0.8    | nd                | nd                | nd                |
| Trichlorofluoromethane        | 0.10   | 0.5    | nd                | nd                | nd                |
| 1,2,3-Trichloropropane        | 0.14   | 0.7    | nd                | nd                | nd                |
| 1,2,4-Trimethylbenzene        | 0.17   | 0.9    | nd                | nd                | nd                |
| 1,3,5-Trimethylbenzene        | 0.26   | 1.3    | nd                | nd                | nd                |
| Vinyl acetate                 | 0.11   | 0.6    | nd                | nd                | nd                |
| Vinyl Chloride (Chloroethene) | 0.11   | 0.6    | nd                | nd                | nd                |
| m & p-Xylene                  | 0.60   | 3.0    | nd                | nd                | nd                |
| o-Xylene                      | 0.29   | 1.5    | nd                | nd                | nd                |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

Reviewed by: Rose Gentallan

|                              |                                        | Quality Contro | ol Data |        |
|------------------------------|----------------------------------------|----------------|---------|--------|
| Surrogates<br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |                |         |        |
| SURR: Bromofluorobenzene     | 80 - 130                               | 100.7%         | 99.0%   | 100.3% |
| SURR: Dibromofluoromethane   | 80 - 120                               | 100.3%         | 99.3%   | 99.7%  |
| SURR: Toluene-d8             | 80 - 130                               | 95.3%          | 95.0%   | 96.3%  |

Comment:

Analyst: Bryan Tiu

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

|                   |              | Date      | Date      |                    |
|-------------------|--------------|-----------|-----------|--------------------|
| Chemistry Log No. | Date Sampled | Received  | Analyzed  | Sample Description |
| Blank             | 5/10/2013    | 5/14/2013 | 5/22/2013 | Method Blank       |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |
|                   |              |           |           |                    |

| Compounds                     | MDL<br>(ug/L) | PQL<br>(ug/L) | Blank<br>Amount<br>ug/L |
|-------------------------------|---------------|---------------|-------------------------|
| Acetone                       | 0.58          | 2.9           | nd                      |
| tert-Amyl methyl ether (TAME) | 0.08          | 0.4           | nd                      |
| Benzene                       | 0.12          | 0.6           | nd                      |
| Bromobenzene                  | 0.10          | 0.5           | nd                      |
| Bromochloromethane            | 0.09          | 0.5           | nd                      |
| Bromodichloromethane          | 0.10          | 0.5           | nd                      |
| Bromoform                     | 0.10          | 0.5           | nđ                      |
| Bromomethane                  | 0.41          | 2.1           | nd                      |
| 2-Butanone (MEK)              | 0.17          | 0.9           | nd                      |
| tert-Butyl alcohol (TBA)      | 8.4           | 42.0          | nd                      |
| n-Butylbenzene                | 0.21          | 1.1           | nd                      |
| sec-Butylbenzene              | 0.21          | 1.1           | nd                      |
| tert-Butylbenzene             | 0.18          | 0.9           | nd                      |
| tert-Butyl ethyl ether (ETBE) | 0.14          | 0.7           | nd                      |
| Carbon disulfide              | 0.30          | 1.5           | nd                      |
| Carbon Tetrachloride          | 0.09          | 0.5           | nd                      |
| Chlorobenzene                 | 0.18          | 0.9           | nd                      |
| Chloroethane                  | 0.17          | 0.9           | nd                      |
| 2-Chloroethyl vinyl ether     | 0.25          | 1.3           | nd                      |
| Chloroform                    | 0.10          | 0.5           | nd                      |
| Chloromethane                 | 0.13          | 0.7           | nd                      |
| 2-Chlorotoluene               | 0.23          | 1.2           | nd                      |
| 4-Chlorotoluene               | 0.25          | 1.3           | nd                      |
| Dibromochloromethane          | 0.11          | 0.6           | nd                      |
| 1,2-Dibromo-3-chloropropane   | 0.13          | 0.7           | nd                      |
| 1,2-Dibromoethane (EDB)       | 0.10          | 0.5           | nd                      |
| Dibromomethane                | 0.10          | 0.5           | nd                      |
| 1,2-Dichlorobenzene           | 0.11          | 0.6           | nd                      |
| 1,3-Dichlorobenzene           | 0.10          | 0.5           | nd                      |
| 1,4-Dichlorobenzene           | 0.15          | 8.0           | nd                      |
| Dichlorodifluoromethane       | 0.46          | 2.3           | nd                      |
| 1,1-Dichloroethane            | 0.10          | 0.5           | nd                      |
| 1,2-Dichloroethane            | 0.13          | 0.7           | nd                      |
| 1,1-Dichloroethene            | 0.11          | 0.6           | nd                      |
| cis-1,2-Dichloroethene        | 0.09          | 0.5           | nd                      |
| trans-1,2-Dichloroethene      | 0.10          | 0.5           | nd                      |
| 1,2-Dichloropropane           | 0.11          | 0.6           | nd                      |
| 1,3-Dichloropropane           | 0.10          | 0.5           | nd                      |
| 2,2-Dichloropropane           | 0.12          | 0.6           | nd                      |
| 1,1-Dichloropropene           | 0.20          | 1.0           | nd                      |
| cis-1,3-Dichloropropene       | 0.12          | 0.6           | nd                      |
| trans-1,3-Dichloropropene     | 0.08          | 0.4           | nd                      |
| Diisopropyl ether (DIPE)      | 0.15          | 8.0           | nd                      |
| Ethylbenzene                  | 0.27          | 1.4           | nd                      |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: FIGUEROA PUMPING STATION

Sample Matrix: Water

|                   |              | Date      | Date      |              |
|-------------------|--------------|-----------|-----------|--------------|
| Chemistry Log No. | Date Sampled |           |           |              |
| Blank             | 5/10/2013    | 5/14/2013 | 5/22/2013 | Method Blank |
|                   |              |           |           |              |
|                   |              |           |           |              |
|                   |              |           |           |              |
|                   |              |           |           |              |
|                   |              |           |           |              |
|                   |              |           |           |              |

|                               |        |        | Blank  |
|-------------------------------|--------|--------|--------|
| Compounds                     | MDL    | PQL    | Amount |
|                               | (ug/L) | (ug/L) | ug/L   |
| Hexachlorobutadiene           | 0.13   | 0.7    | nd     |
| 2-Hexanone                    | 0.13   | 0.7    | nd     |
| =                             |        |        |        |
| Isopropylbenzene              | 0.20   | 1.0    | nd<br> |
| p-isopropyltoluene            | 0.25   | 1.3    | nd     |
| Methyl-t-butyl ether (MTBE)   | 0.14   | 0.7    | nd     |
| Methylene chloride            | 0.18   | 0.9    | nd     |
| Methyl iodide (lodomethane)   | 0.11   | 0.6    | nd     |
| 4-Methyl-2-pentanone (MIBK)   | 0.09   | 0.5    | nd     |
| Naphthalene                   | 0.38   | 1.9    | nd     |
| Propylbenzene                 | 0.25   | 1.3    | nd     |
| Styrene (Phenylethylene)      | 0.24   | 1.2    | nd     |
| 1,1,1,2-Tetrachloroethane     | 0.10   | 0.5    | nd     |
| 1,1,2,2-Tetrachloroethane     | 0.10   | 0.5    | nd     |
| Tetrachloroethylene           | 0.10   | 0.5    | nd     |
| Toluene                       | 0.29   | 1.5    | nd     |
| 1,2,3-Trichlorobenzene        | 0.17   | 0.9    | nd     |
| 1,2,4-Trichlorobenzene        | 0.12   | 0.6    | nd     |
| 1,1,1-Trichloroethane         | 0.09   | 0.5    | nd     |
| 1,1,2-Trichloroethane         | 0.09   | 0.5    | nd     |
| Trichloroethylene             | 0.16   | 0.8    | nd     |
| Trichlorofluoromethane        | 0.10   | 0.5    | nd     |
| 1,2,3-Trichloropropane        | 0.14   | 0.7    | nd     |
| 1,2,4-Trimethylbenzene        | 0.17   | 0.9    | nd     |
| 1,3,5-Trimethylbenzene        | 0.26   | 1.3    | nd     |
| Vinyl acetate                 | 0.11   | 0.6    | nd     |
| Vinyl Chloride (chloroethene) | 0.11   | 0.6    | nd     |
| m & p-Xylene                  | 0.60   | 3.0    | nd     |
| o-Xylene                      | 0.29   | 1.5    | nd     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |             | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
|                            | QC Limits   |                      |  |
| Surrogates                 | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper |                      |  |
| SURR: Bromofluorobenzene   | 80 -130     | 104.7%               |  |
| SURR: Dibromofluoromethane | 80 - 120    | 101.0%               |  |
| SURR: Toluene-d8           | 80 - 130    | 96.0%                |  |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

**USEPA 8260** 

### Quality Assurance Report

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 5/22/13

BATCH #: \$VOC-W-77! LN05901 LN05902 LN05903

LAB SAMPLE I.D.: LN05754 UNIT: ug/L

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 28.5 | 95.0 | 30.0                   | 31.4 | 105  | 10 %   | 61-145          | 14%       |
| Benzene            | 0.714            | 30.0          | 30.1 | 98.0 | 30.0                   | 32.0 | 104  | 5.9 %  | 76-127          | 11%       |
| Trichloroethylene  | ND               | 30.0          | 30.7 | 102  | 30.0                   | 32.0 | 107  | 4.8 %  | 71-120          | 14%       |
| Toluene            | ND               | 30.0          | 30.8 | 103  | 30.0                   | 31.9 | 106  | 2.9 %  | 76-125          | 13%       |
| Chlorobenzene      | NĐ               | 30.0          | 32.9 | 110  | 30.0                   | 33.2 | 111  | 0.90 % | 75-130          | 13%       |

ANALYTICAL METHOD:

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

5/22/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LAB LCS I.D.: Q8087

LOT NUMBER:

UNIT: ug/L

DATE OF SOURCE:

| T          |                                                              | <u> </u>                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                               |
|------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
| LCS RESULT | TRUE VALUE                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
| ug/L       | ug/L                                                         | % RECOVERY                                                                                                                                                                                              | Advisory Range                                                                                                                                                                                                                                                                                                            |
| 32.3       | 30                                                           | 107.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 30.3       | 30                                                           | 101.0                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 30.6       | 30                                                           | 102.0                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 27.6       | 30                                                           | 92.0                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 35.3       | 30                                                           | 117.7                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 24.8       | 30                                                           | 82.7                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 29.9       | 30                                                           | 99.7                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| 29         | 30                                                           | 96.7                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                  |
| _          |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |
|            |                                                              |                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                  |
|            | ug/L<br>32.3<br>30.3<br>30.6<br>27.6<br>35.3<br>24.8<br>29.9 | ug/L         ug/L           32.3         30           30.3         30           30.6         30           27.6         30           35.3         30           24.8         30           29.9         30 | ug/L         ug/L         % RECOVERY           32.3         30         107.7           30.3         30         101.0           30.6         30         102.0           27.6         30         92.0           35.3         30         117.7           24.8         30         82.7           29.9         30         99.7 |

# ATTACHMENT # 2

Total Extractable Petroleum Hydrocarbons (TEPH, MO and DRO)
EPA Method 8015M
Soil & Water

# CITY OF LOS ANGELES, DEPARTMENT OF WATER & POWER ENVIRONMENTAL LABORATORY

#### CASE NARRATIVE

PROJECT: FIGUEROA PUMPING STATION

## METHOD 8015M TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS (TEPH, DRO, MO)

### 1. Holding Time

Analytical holding time was met.

### 2. Method Blank

There was no contamination detected at reporting level.

### 3. Lab Control Sample

Laboratory control samples for TEPH (C9-C36), diesel range organics (DRO), and motor oil (MO) were analyzed each in a batch. Recoveries were within QC limits.

### 4. Surrogate Recovery

Recoveries met QC criteria.

### 5. Sample Duplicate

Sample duplicates were analyzed for every batch of fourteen samples or less

### 6. Calibration

Initial calibration was performed at five different concentrations. The percent relative standard deviation (% RSD) was within 15%. Continuing calibration check standards were within QC limits.

### 7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. Reportable amount of TEPH were detected on sample number LN05578, LN05648, LN05649, LN05796, LN05918, and LN05932. Since TEPH range includes petroleum products such as diesel, motor oil, and transformer oil; detection of any or all of these products is reported as TEPH concentration. The presence of diesel, motor oil, and transformer oil in the sample is reported separately and also as TEPH concentration. Trace amount (<PQL) of TEPH concentrations were detected in a few samples.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE        | DATE       | DATE      | DATE     | CANADI             | E DECOR  | IDTION  | INST.      | D.O.    |          |
|--------------|-------------|------------|-----------|----------|--------------------|----------|---------|------------|---------|----------|
| LOG NO.      | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION |          |         | ID         | RUN     | BATCH    |
| LN05578#     | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-10 |         | GC Agilent | 05      | 1713     |
| LN05579      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-15 |         | GC Agilent | 05      | 1713     |
| LN05580      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-20 |         | GC Agilent | 05      | 1713     |
| LN05581      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-25 |         | GC Agilent | 05      | 1713     |
| LN05582      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 | !<br>!             | KLF-1-30 |         | GC Agilent | 05      | 1713     |
| LN05583      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-35 |         | GC Agilent | 05      | 1713     |
| LN05584      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-40 |         | GC Agilent | 05      | 1713     |
|              |             |            |           |          |                    |          |         |            |         |          |
|              |             | MDL / PQL  | MB        | LN05578# | LN05579            | LN05580  | LN05581 | LN05582    | LN05583 | LN05584  |
|              |             | mg/kg      | mg/kg     | mg/kg    | mg/kg              | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg    |
| Dilution 1   | Factor      |            | 1         | 5        | 1                  | 1        | 1       | 1          | 1       | 1        |
| ТЕРН (С9     | - C36)      | 4/20       | ND        | 4280     | ND                 | ND       | ND      | ND         | ND      | ND       |
| DRO (C10     | - C28)      | 29 / 145   | ND        | 3240     | ND                 | ND       | ND      | ND         | ND      | ND       |
| MOTOR        | OIL         | 35 / 175   | ND        | 1040     | ND                 | ND       | ND      | ND         | ND      | ND       |
|              |             |            |           |          |                    |          |         |            | <br>    | İ        |
| Quality      | Control D   | ata_       |           |          |                    |          |         |            |         |          |
|              |             |            | MB        |          |                    |          |         |            |         | <u> </u> |
| Surrogate/In | ternal Std. | % ACP      | % RC      | % RC     | % RC               | % RC     | % RC    | % RC       | % RC    | % RC     |
|              |             |            |           |          |                    |          |         |            |         |          |
| 1-Chlorooct  | adecane     | (60 - 140) | 82.5%     | 107%     | 87.0%              | 68.0%    | 94.0%   | 82.5%      | 79.0%   | 89.5%    |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

 $ACP \ensuremath{\,\%} = Acceptable \ensuremath{\,Range} \ensuremath{\,arge} \ensuremath{\,arge} \ensuremath{\,arge} \ensuremath{\,arge}$ 

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE        | DATE       | DATE      | DATE     |                    |          |         | INST.      |          |             |
|--------------|-------------|------------|-----------|----------|--------------------|----------|---------|------------|----------|-------------|
| LOG NO.      | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION |          |         | ID         | RUN      | ВАТСН       |
| LN05585      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 | KLF-1-45           |          |         | GC Agilent | 05       | 1713        |
| LN05586      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-50 |         | GC Agilent | 05       | 1713        |
| LN05587      | 05/13/13    | 05/13/13   | 05/16/13  | 05/17/13 |                    | KLF-1-55 |         | GC Agilent | 05       | 1713        |
| LN05588      | 05/13/13    | 05/13/13   | 05/20/13  | 05/20/13 | }                  | KLF-1-60 |         | GC Agilent | . 05:    | 2013        |
| LN05589      | 05/13/13    | 05/13/13   | 05/20/13  | 05/20/13 |                    | KLF-1-65 |         | GC Agilent | 05:      | 2013        |
| LN05590      | 05/13/13    | 05/13/13   | 05/20/13  | 05/20/13 |                    | KLF-1-70 |         | GC Agilent | 05:      | 2013        |
| LN05591      | 05/13/13    | 05/13/13   | 05/20/13  | 05/20/13 | <u> </u>           | KLF-1-75 |         | GC Agilent | 052      | 2013        |
|              |             |            |           |          |                    |          |         |            |          | <del></del> |
|              |             | MDL / PQL  | MB        | LN05585  | LN05586            | LN05587  | LN05588 | LN05589    | LN05590  | LN05591     |
|              |             | mg/kg      | mg/kg     | mg/kg    | mg/kg              | mg/kg    | mg/kg   | mg/kg      | mg/kg    | mg/kg       |
| Dilution I   | actor       | ·          | 1         | 1        | 1                  | 1        | 1       | 1          | 1        | 1           |
| ТЕРН (С9     | - C36)      | 4 / 20     | ND        | ND       | ND                 | ND       | 4.3 J   | 12.1 J     | 12.3 Ј   | ND          |
| DRO (C10     | - C28)      | 29 / 145   | ND        | ND       | ND                 | ND       | ND      | ND         | ND       | ND          |
| MOTOR        | OIL         | 35 / 175   | ND        | ND       | ND                 | ND       | ND      | ND         | ND       | ND          |
|              |             | 1          |           |          |                    |          |         | <br>       |          |             |
| Quality      | Control D   | ata_       |           |          |                    |          | !<br>!  |            | <br>     |             |
|              |             |            | MB        |          |                    |          | 1       | <u> </u>   |          | !           |
| Surrogate/In | ternal Std. | % ACP      | % RC      | % RC     | % RC               | % RC     | % RC    | % RC       | % RC     | % RC        |
|              | ···         |            |           |          |                    |          | !       | i<br> <br> | <u>.</u> | !           |
| 1-Chloroocta | decane      | (60 - 140) | 80.5%     | 96.0%    | 85.0%              | 82.0%    | 83.0%   | 75.0%      | 83.0%    | 82.5%       |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% *RC* = % *Recovery* 

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

<sup>#</sup>True MDL/PQL = listed MDL/PQL X dilution factor.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPL    | E DESCRIP | rion | INST.<br>ID | RUN BATCH    | ſ |
|-------------------|-----------------|------------------|-------------------|------------------|----------|-----------|------|-------------|--------------|---|
| LN05592           | 05/13/13        | 05/13/13         | 05/20/13          | 05/20/13         |          | KLF-1-80  |      | GC Agilent  | 052013       |   |
| LN05593           | 05/13/13        | 05/13/13         | 05/20/13          | 05/20/13         |          | KLF-1-85  |      | GC Agilent  | 052013       |   |
| LN05594           | 05/13/13        | 05/13/13         | 05/20/13          | 05/20/13         |          | KLF-1-90  |      | GC Agilent  | 052013       |   |
|                   |                 |                  |                   |                  | <br>     |           |      |             |              |   |
|                   |                 |                  |                   |                  |          |           |      |             |              |   |
|                   |                 |                  |                   |                  |          |           |      | :<br>:      | <del> </del> |   |
|                   |                 | <u> </u>         |                   |                  | İ        |           |      |             |              |   |
|                   |                 | MDL / PQL        |                   | LN05592          | I NO5503 | LN05594   |      | T           |              |   |
|                   |                 | mg/kg            |                   | mg/kg            | mg/kg    | mg/kg     |      |             |              |   |
| Dilution Fac      | etor            |                  |                   | 1                | 1        | 1         |      | :           |              |   |
| ТЕРН (С9          | - C36)          | 4 / 20           |                   | ND               | ND       | 4.5 J     |      |             |              |   |
| DRO (C10          | - C28)          | 29 / 145         |                   | ND               | ND       | ND        |      | ;<br>;      |              |   |
| MOTOR             | ROIL            | 35 / 175         |                   | ND               | ND       | ND        |      |             |              |   |
| Quality           | v Control D     | ata_             |                   |                  |          |           |      |             |              |   |
| Surrogate/In      | iternal Std.    | % ACP            |                   | % RC             | % RC     | % RC      |      |             |              |   |
|                   |                 |                  |                   |                  |          |           |      |             |              |   |
| 1-Chlorooct       | adecane         | (60 - 140)       |                   | 70.5%            | 68.5%    | 60.0%     |      |             |              |   |

,ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

 $ACP \ \% = Acceptable \ Range \ of \ Percent$ 

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

# I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPL       | E DESCRIPTION                         | INST.        | RUN BATCH |
|-------------------|-----------------|------------------|-------------------|------------------|-------------|---------------------------------------|--------------|-----------|
| LN05584 DUP       | 05/13/13        | 05/13/13         | 05/16/13          | 05/17/13         | KLF-1-40    |                                       | GC Agilent   | 051713    |
| LN05588 DUP       | 05/13/13        | 05/13/13         | 05/20/13          | 05/20/13         |             | KLF-1-60                              | GC Agilent   | 052013    |
|                   |                 |                  |                   |                  |             |                                       |              |           |
| <br>!             | ····            |                  |                   |                  |             |                                       |              |           |
|                   |                 |                  |                   |                  |             |                                       | :            |           |
|                   |                 |                  |                   |                  |             |                                       | <del> </del> |           |
|                   |                 | <u> </u>         | ·                 |                  |             |                                       |              |           |
|                   |                 |                  | - ··-·            | LN05584          | LN05588     | ,                                     |              |           |
|                   |                 | MDL / PQL        |                   | DUP              | DUP         | :<br>!                                |              |           |
|                   |                 | mg/kg            |                   | mg/kg            | mg/kg       | · · · · · · · · · · · · · · · · · · · |              |           |
| Dilution          | Factor          |                  |                   | 1                | 1           |                                       | <u> </u>     |           |
| ТЕРН (С           | ) - C36)        | 4 / 20           |                   | ND               | ND          | :                                     |              | ļ         |
| DRO (C10          | ) - C28)        | 29 / 145         |                   | ND               | ND          | :<br>                                 |              |           |
| MOTOR             | ROIL            | 35 / 175         |                   | ND               | ND          |                                       |              |           |
| Quality           | y Control D     | lata             |                   |                  |             |                                       |              |           |
| Quanty            | y Control L     | ·414             |                   | <br>             | [<br>i<br>· |                                       |              | !         |
| Surrogate/In      | nternal Std.    | % ACP            | :                 | % RC             | % RC        |                                       |              | ,<br>:    |
| 1-Chlorooc        | tadecane        | (60 - 140)       |                   | 89.5%            | 105%        |                                       |              |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT   | %REC. | Acceptable Range |
|---------|-----------|---------------|-------------|----------|-------|------------------|
| ТЕРН    | 052013    | 5/20/2013     | 280         | 200      | 71.4  | 70 - 130         |
| DRO     | 052013    | 5/20/2013     | 500         | 350      | 70.0  | 70 - 130         |
| МО      | 052013    | 5/20/2013     | 500         | 457      | 91.4  | 70 - 130         |
|         |           |               |             |          |       |                  |
|         |           |               |             |          |       |                  |
|         |           |               |             | <u> </u> |       |                  |
|         |           |               |             | <u> </u> |       |                  |
|         |           |               |             |          |       |                  |
|         |           |               |             |          |       |                  |
|         |           |               | <u> </u>    |          |       |                  |
|         |           |               |             |          |       |                  |
|         |           |               | -           | <u> </u> |       |                  |
|         |           |               |             | i        |       |                  |

Analysts

J. Yi

Reviewed by

R. Gentallan

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE         | DATE       | DATE      | DATE     |                    |          |         | INST.      |         |         |
|--------------|--------------|------------|-----------|----------|--------------------|----------|---------|------------|---------|---------|
| LOG NO.      | SAMPLED      | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION |          |         | ID         | RUN B   | ATCH    |
| LN05648#     | 05/14/13     | 05/14/13   | 05/20/13  | 05/20/13 | KLF-2-10           |          |         | GC Agilent | 052013  |         |
| LN05649      | 05/14/13     | 05/14/13   | 05/20/13  | 05/20/13 |                    | KLF-2-15 |         | GC Agilent | 052     | 013     |
| LN05650      | 05/14/13     | 05/14/13   | 05/20/13  | 05/20/13 |                    | KLF-2-20 |         | GC Agilent | 052     | 013     |
| LN05651      | 05/14/13     | 05/14/13   | 05/20/13  | 05/20/13 |                    | KLF-2-25 |         | GC Agilent | 052     | 013     |
| LN05652      | 05/14/13     | 05/14/13   | 05/20/13  | 05/20/13 |                    | KLF-2-30 |         | GC Agilent | 052     | 013     |
| LN05653      | 05/14/13     | 05/14/13   | 05/20/13  | 05/20/13 |                    | KLF-2-35 |         | GC Agilent | 052     | 013     |
| LN05654      | 05/14/13     | 05/14/13   | 05/20/13  | 05/20/13 |                    | KLF-2-40 |         | GC Agilent | 052     | 013     |
|              |              |            |           |          |                    |          |         |            |         |         |
|              |              | MDL / PQL  | MB        | LN05648# | LN05649            | LN05650  | LN05651 | LN05652    | LN05653 | LN05654 |
|              |              | mg/kg      | mg/kg     | mg/kg    | mg/kg              | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   |
| Dilution     | Factor       |            | 1         | 5        | 1                  | 1        | 1       | 1          | 11      | 1       |
| ТЕРН (С9     | 9 - C36)     | 4/20       | ND        | 5540     | 429                | 12.7 J   | ND      | ND         | ND      | 12.3 J  |
| DRO (C10     | ) - C28)     | 29 / 145   | ND        | 4520     | ND                 | ND       | ND      | ND         | ND      | ND      |
| МОТОІ        | ROIL         | 35 / 175   | ND        | 1020     | 429                | ND       | ND      | ND         | ND      | ND      |
| ···          |              |            |           | į<br>į   |                    |          |         |            |         |         |
| Quality      | Control D    | ata_       |           |          |                    |          |         |            |         |         |
|              |              |            | MB        |          |                    |          |         |            |         |         |
| Surrogate/Ir | nternal Std. | % ACP      | % RC      | % RC     | % RC               | % RC     | % RC    | % RC       | % RC    | % RC    |
|              |              |            |           |          |                    |          |         |            |         |         |
| 1-Chlorooct  | adecane      | (60 - 140) | 80.5%     | 111%     | 79.5%              | 79.0%    | 69.5%   | 76.5%      | 85.5%   | 91.0%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED                       | DATE<br>ANALYZED | SAMPI    | E DESCR  | IPTION | INST.      | RUN BATCH |
|-------------------|-----------------|------------------|-----------------------------------------|------------------|----------|----------|--------|------------|-----------|
| LN05655           | 05/14/13        | 05/14/13         | 05/20/13                                | 05/20/13         | KLF-2-45 |          |        | GC Agilent | 052013    |
| LN05656           | 05/14/13        | 05/14/13         | 05/20/13                                | 05/20/13         | KLF-2-50 |          |        | GC Agilent | 052013    |
| LN05657           | 05/14/13        | 05/14/13         | 05/20/13                                | 05/20/13         |          | KLF-2-55 | ****   | GC Agilent | 052013    |
| LN05658           | 05/14/13        | 05/14/13         | 05/20/13                                | 05/28/13         |          | KLF-2-60 |        | GC Agilent | 052013    |
| LN05659           | 05/14/13        | 05/14/13         | 05/20/13                                | 05/28/13         |          | KLF-2-65 |        | GC Agilent | 052013    |
|                   |                 |                  |                                         |                  |          |          |        | ,          |           |
|                   |                 |                  |                                         |                  |          |          |        |            |           |
|                   |                 |                  |                                         |                  |          |          |        |            |           |
|                   |                 | MDL / PQL        |                                         | LN05655          | LN05656  |          | 1      | LN05659    |           |
|                   |                 | mg/kg            | · · · · • · · · · · · · · · · · · · · · | mg/kg            | mg/kg    | mg/kg    | mg/kg  | mg/kg      |           |
| Dilution          | Factor          |                  |                                         | 11               | 1        | 1        | 1      | 1          |           |
| TEPH (CS          | 9 - C36)        | 4 / 20           |                                         | ND               | 5.3 J    | ND       | ND     | ND         |           |
| DRO (C10          | 0 - C28)        | 29 / 145         |                                         | ND               | ND       | ND       | ND     | ND         | 1         |
| мотоі             | R OIL           | 35 / 175         |                                         | ND               | ND       | ND       | ND     | ND         |           |
| Quality           | y Control D     | ata_             |                                         |                  |          |          |        |            |           |
| Surrogate/I1      | nternal Std.    | % ACP            |                                         | % RC             | % RC     | % RC     | % RC   | % RC       |           |
|                   |                 |                  |                                         |                  |          |          |        |            |           |
| 1-Chlorooct       | tadecane        | (60 - 140)       |                                         | 73.0%            | 65.5%    | 70.0%    | 79.0%  | 83.5%      |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks. #True MDL/PQL = listed MDL/PQL X dilution factor.

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

# I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED  | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.      | RUN BATCH |
|-------------------|-----------------|-------------------|-------------------|------------------|--------------------|------------|-----------|
| LN05659 DUP       | 05/14/13        | 05/14/13          | 05/20/13          | 05/28/13         | KLF-2-65           | GC Agilent | 052813    |
|                   |                 |                   |                   |                  |                    |            |           |
| l                 |                 |                   |                   |                  |                    |            |           |
|                   |                 |                   |                   |                  |                    |            |           |
|                   |                 |                   |                   |                  |                    |            |           |
|                   |                 |                   |                   |                  |                    |            |           |
|                   |                 |                   |                   |                  |                    |            |           |
|                   |                 |                   |                   | LN05659          |                    | · ; ,      |           |
|                   |                 | MDL / PQL         |                   | DUP              |                    |            |           |
|                   |                 | mg/kg             |                   | mg/kg            |                    |            |           |
| Dilution          | Factor          |                   |                   | 11               |                    |            |           |
| ТЕРН (С9          | 9 - C36)        | 4/20              |                   | ND               |                    |            |           |
| DRO (C10          | ) - C28)        | 29 / 145          |                   | ND               |                    |            |           |
| МОТОІ             | ROIL            | 35 / 175          |                   | ND               |                    |            |           |
| Quality           | Control D       | ata               |                   |                  |                    |            |           |
| <u> </u>          |                 | A Palit A America |                   |                  |                    |            |           |
| Surrogate/Ir      | nternal Std.    | % ACP             |                   | % RC             |                    |            |           |
|                   |                 |                   |                   |                  |                    |            |           |
| 1-Chlorooct       | adecane         | (60 - 140)        |                   | 88.0%            |                    |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery MB - Method Blank

\*High recovery caused by overlap with TEPH peaks.

# QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT   | %REC. | Acceptable Range |
|---------|-----------|---------------|-------------|----------|-------|------------------|
| ТЕРН    | 052013    | 5/20/2013     | 280         | 200      | 71.4  | 70 - 130         |
| DRO     | 052013    | 5/20/2013     | 500         | 350      | 70.0  | 70 - 130         |
| МО      | 052013    | 5/20/2013     | 500         | 457      | 91.4  | 70 - 130         |
|         |           |               |             |          |       |                  |
|         |           |               | ,           |          | ···   |                  |
|         |           | !             |             |          | 1     |                  |
|         |           | :             |             |          |       |                  |
|         |           |               |             |          | ļ     |                  |
|         |           |               |             | <br>     |       |                  |
|         |           |               |             | 1        |       |                  |
|         |           |               |             | <u> </u> |       |                  |
|         |           |               |             |          |       |                  |
|         |           |               |             |          | 1     |                  |

Analysts

J. Yi

Reviewed by

R. Gentallan

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE         | DATE       | DATE      | DATE     |                    |          |         | INST.      |         |        |
|--------------|--------------|------------|-----------|----------|--------------------|----------|---------|------------|---------|--------|
| LOG NO.      | SAMPLED      | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION |          |         | ID         | RUN B   | ATCH   |
| LN05740      | 05/15/13     | 05/15/13   | 05/21/13  | 05/28/13 | KLF-3-10           |          |         | GC Agilent | 0528    | 313    |
| LN05741      | 05/15/13     | 05/15/13   | 05/21/13  | 05/28/13 |                    | KLF-3-15 |         | GC Agilent | 0528    | 813    |
| LN05742      | 05/15/13     | 05/15/13   | 05/21/13  | 05/28/13 |                    | KLF-3-20 |         | GC Agilent | 0528    | 813    |
| LN05743      | 05/15/13     | 05/15/13   | 05/21/13  | 05/28/13 |                    | KLF-3-25 |         | GC Agilent | 0528    | 813    |
| LN05744      | 05/15/13     | 05/15/13   | 05/21/13  | 05/28/13 |                    | KLF-3-30 |         | GC Agilent | 0528    | 813    |
| LN05745      | 05/15/13     | 05/15/13   | 05/21/13  | 05/28/13 |                    | KLF-3-35 |         | GC Agilent | 0528    | 813    |
| LN05746      | 05/15/13     | 05/15/13   | 05/21/13  | 05/28/13 |                    | KLF-3-40 |         | GC Agilent | 0528    | 813    |
|              |              |            |           |          |                    |          |         |            |         |        |
|              |              | MDL / PQL  | MB        | LN05740  | LN05741            | LN05742  | LN05743 | LN05744    | LN05745 | LN0574 |
|              |              | mg/kg      | mg/kg     | mg/kg    | mg/kg              | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg  |
| Dilution     | Factor       |            | 1         | 1        | 1                  | 1        | 1       | 1          | 1       | 1      |
| ТЕРН (С      | 9 - C36)     | 4 / 20     | ND        | ND       | 12.1 J             | 12.7 J   | 12.2 J  | 8.6 J      | ND      | ND_    |
| DRO (C10     | ) - C28)     | 29 / 145   | ND        | ND       | ND                 | ND       | ND      | ND         | ND      | ND     |
| МОТОІ        | R OIL        | 35 / 175   | ND        | ND       | ND                 | ND       | ND      | ND         | ND      | ND     |
|              |              |            |           |          |                    |          |         |            |         |        |
| Quality      | Control D    | ata_       |           |          |                    |          |         |            |         |        |
|              |              |            | MB        |          |                    |          |         |            |         |        |
| Surrogate/Ir | nternal Std. | % ACP      | % RC      | % RC     | % RC               | % RC     | % RC    | % RC       | % RC    | % RC   |
|              |              |            |           |          |                    |          |         |            |         |        |
| 1-Chlorooct  | adecane      | (60 - 140) | 102%      | 99.5%    | 109%               | 88.0%    | 81.0%   | 111%       | 114%    | 113%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPI                       | E DESCR  | IPTION     | INST.      | RUN BATCH |
|-------------------|-----------------|------------------|-------------------|------------------|-----------------------------|----------|------------|------------|-----------|
| LN05747           | 05/15/13        | 05/15/13         | 05/21/13          | 05/28/13         | SAMPLE DESCRIPTION KLF-3-45 |          | GC Agilent | 052813     |           |
| LN05747           | 05/15/13        | 05/15/13         | 05/21/13          | 05/28/13         | KLF-3-45                    |          |            | GC Agilent | 052813    |
| LN05749           | 05/15/13        | 05/15/13         | 05/21/13          | 05/28/13         |                             | KLF-3-55 |            | GC Agilent | 052813    |
| LN05750           | 05/15/13        | 05/15/13         | 05/21/13          | 05/28/13         |                             | KLF-3-60 |            | GC Agilent | 052813    |
| LN05751           | 05/15/13        | 05/15/13         | 05/21/13          | 05/28/13         |                             | KLF-3-65 |            | GC Agilent | 052813    |
|                   |                 |                  |                   |                  |                             |          |            |            |           |
|                   |                 |                  |                   |                  |                             |          |            |            |           |
|                   |                 |                  |                   |                  |                             |          |            |            |           |
|                   |                 | MDL / PQL        |                   | LN05747          | LN05748                     | LN05749  | LN05750    | LN05751    |           |
|                   |                 | mg/kg            |                   | mg/kg            | mg/kg                       | mg/kg    | mg/kg      | mg/kg      |           |
| Dilution          | Factor          |                  |                   | 1                | 1                           | 1        | 11         | 1          |           |
| ТЕРН (С           | 9 - C36)        | 4 / 20           |                   | 8.6 J            | ND                          | ND       | 8.8 J      | ND         |           |
| DRO (C10          | 0 - C28)        | 29 / 145         |                   | ND               | ND                          | ND       | ND         | ND         |           |
| МОТОІ             | ROIL            | 35 / 175         |                   | ND               | ND                          | ND       | ND         | ND         |           |
| Quality           | y Control D     | ata_             |                   |                  |                             |          |            |            |           |
| Surrogate/Ii      | nternal Std.    | % ACP            | !                 | % RC             | % RC                        | % RC     | % RC       | % RC       |           |
| 1-Chlorooct       | tadecane        | (60 - 140)       |                   | 105%             | 109%                        | 117%     | 106%       | 97.0%      |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL -  $Practical\ Quantitation\ Limit\ (5\ x\ MDL)$ 

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks. #True MDL/PQL = listed MDL/PQL X dilution factor.

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

# I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.      | RUN BATCH |
|-------------------|-----------------|------------------|-------------------|------------------|--------------------|------------|-----------|
| ·                 |                 |                  |                   |                  |                    |            |           |
| LN05742 DUP       | 05/15/13        | 05/15/13         | 05/21/13          | 06/04/13         | KLF-3-20           | GC Agilent | 060413    |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    | -          |           |
|                   |                 |                  |                   | :                |                    |            |           |
|                   |                 |                  |                   | LN05742          |                    |            |           |
|                   |                 | MDL / PQL        |                   | DUP              |                    |            |           |
|                   |                 | mg/kg            |                   | mg/kg            |                    |            |           |
| Dilution 1        | Factor          |                  |                   | 1                |                    |            |           |
| ТЕРН (С9          | - C36)          | 4 / 20           |                   | 5.8 J            |                    |            |           |
| DRO (C10          | - C28)          | 29 / 145         |                   | ND               |                    |            |           |
| MOTOR             | ROIL            | 35 / 175         |                   | ND               |                    |            | _         |
|                   |                 |                  |                   |                  |                    |            |           |
| Quality           | Control D       | <u>ata</u>       |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
| Surrogate/In      | ternal Std.     | % ACP            |                   | % RC             |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
| 1-Chlorooct       | adecane         | (60 - 140)       |                   | 82.5%            |                    |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Range |
|---------|-----------|---------------|-------------|--------|-------|------------------|
| ТЕРН    | 060413    | 6/4/2013      | 280         | 343    | 123   | 70 - 130         |
| DRO     | 060413    | 6/4/2013      | 500         | 419    | 83.8  | 70 - 130         |
| МО      | 060413    | 6/4/2013      | 500         | 374    | 74.8  | 70 - 130         |
|         |           |               |             |        |       |                  |
|         |           |               |             |        | r     |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        | !     |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |

Analysts

J. Yi

Reviewed by

R. Gentallan

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE                    | DATE       | DATE      | DATE     |                    |          |            | INST.      |           |         |
|--------------|-------------------------|------------|-----------|----------|--------------------|----------|------------|------------|-----------|---------|
| LOG NO.      | SAMPLED                 | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION |          |            | ID         | RUN BATCH |         |
| LN05796      | 05/16/13                | 05/17/13   | 05/21/13  | 05/28/13 | KLF-5-5            |          | GC Agilent | 052803     |           |         |
| LN05797      | 05/16/13                | 05/17/13   | 05/21/13  | 05/28/13 |                    | KLF-5-10 |            | GC Agilent | 052       | 2803    |
| LN05798      | 05/16/13                | 05/17/13   | 05/21/13  | 05/28/13 |                    | KLF-5-15 |            | GC Agilent | 052       | 2803    |
| LN05799      | 05/16/13                | 05/17/13   | 05/21/13  | 05/28/13 |                    | KLF-5-20 |            | GC Agilent | 052       | 2803    |
| LN05800      | 05/16/13                | 05/17/13   | 05/21/13  | 05/28/13 |                    | KLF-5-25 |            | GC Agilent | 052       | 2803    |
| LN05801      | 05/16/13                | 05/17/13   | 05/21/13  | 06/04/13 |                    | KLF-5-30 |            | GC Agilent | 060       | )413    |
| LN05802      | 05/16/13                | 05/17/13   | 05/21/13  | 06/04/13 |                    | KLF-5-35 |            | GC Agilent | 060413    |         |
|              |                         |            |           |          |                    |          |            |            |           |         |
|              |                         | MDL / PQL  | MB        | LN05796  | LN05797            | LN05798  | LN05799    | LN05800    | LN05801   | LN05802 |
|              |                         | mg/kg      | mg/kg     | mg/kg    | mg/kg              | mg/kg    | mg/kg      | mg/kg      | mg/kg     | mg/kg   |
| Dilution     | Factor                  |            | 1         | 1        | 1                  | 1        | 1          | 1          | 1         | 1       |
| ТЕРН (С      | 9 - C36)                | 4/20       | ND        | 342      | 12.4 J             | ND       | ND         | ND         | 6.0 J     | 7.5 J   |
| DRO (C1      | 0 - C28)                | 29 / 145   | ND        | 125 J    | ND                 | ND       | ND         | ND         | ND        | ND      |
| MOTO         | R OIL                   | 35 / 175   | ND        | 217      | ND                 | ND       | ND         | ND         | ND        | ND      |
|              |                         |            |           |          |                    |          |            |            |           |         |
| Qualit       | Quality Control Data    |            |           |          |                    |          | :          |            |           |         |
|              |                         | MB         |           |          |                    |          |            |            |           |         |
| Surrogate/In | Surrogate/Internal Std. |            | % RC      | % RC     | % RC               | % RC     | % RC       | % RC       | % RC      | % RC    |
|              |                         |            |           |          |                    |          |            |            |           |         |
| 1-Chlorooc   | tadecane                | (60 - 140) | 102%      | 130%     | 92.5%              | 81.0%    | 130%       | 67.0%      | 114%      | 113%    |

'ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO.             | DATE<br>SAMPLED         | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPLE DESCRIPTION |          | INST.<br>ID | RUN I      | ВАТСН   |         |
|-------------------------------|-------------------------|------------------|-------------------|------------------|--------------------|----------|-------------|------------|---------|---------|
| LN05803                       | 05/16/13                | 05/17/13         | 05/21/13          | 06/04/13         | KLF-5-40           |          | GC Agilent  | 060413     |         |         |
| LN05804                       | 05/16/13                | 05/17/13         | 05/30/13          | 06/04/13         |                    | KLF-5-45 |             | GC Agilent | 060     | 0413    |
| LN05805                       | 05/16/13                | 05/17/13         | 05/30/13          | 06/04/13         |                    | KLF-5-50 |             | GC Agilent | 060     | 0413    |
| LN05806                       | 05/16/13                | 05/17/13         | 05/30/13          | 06/04/13         |                    | KLF-5-55 |             | GC Agilent | 060     | 0413    |
| LN05807                       | 05/16/13                | 05/17/13         | 05/30/13          | 06/04/13         |                    | KLF-5-60 |             | GC Agilent | 060     | 0413    |
| LN05808                       | 05/16/13                | 05/17/13         | 05/30/13          | 06/04/13         |                    | KLF-5-65 |             | GC Agilent | 060     | )413    |
| LN05809                       | 05/16/13                | 05/17/13         | 05/30/13          | 06/04/13         |                    | KLF-5-70 |             | GC Agilent | 060     | 0413    |
|                               |                         | r                |                   |                  |                    |          |             | ı          |         |         |
|                               |                         | MDL / PQL        | MB                | LN05803          | LN05804            | LN05805  | LN05806     | LN05807    | LN05808 | LN05809 |
|                               |                         | mg/kg            | mg/kg             | mg/kg            | mg/kg              | mg/kg    | mg/kg       | mg/kg      | mg/kg   | mg/kg   |
| Dilution                      | Factor                  |                  | 1                 | 1                | 1                  | 1        | 1           | 1          | 1       | 1       |
| ТЕРН (С                       | 9 - C36)                | 4/20             | ND                | 14.3 J           | ND                 | ND       | ND          | ND         | ND      | ND      |
| DRO (C1                       | 0 - C28)                | 29 / 145         | ND                | ND               | ND                 | ND       | ND          | ND         | ND      | ND      |
| MOTO)                         | R OIL                   | 35 / 175         | ND                | ND               | ND                 | ND       | ND          | ND         | ND      | ND      |
| Quality Control Data          |                         | MD               |                   |                  |                    |          |             |            |         |         |
| Surrogate/Internal Std. % ACP |                         |                  | MB                | 24.75            | 01775              |          |             | 01.00      | 04.70.5 |         |
| Surrogate/In                  | Surrogate/Internal Std. |                  | % RC              | % RC             | % RC               | % RC     | % RC        | % RC       | % RC    | % RC    |
|                               |                         |                  |                   |                  |                    |          | 04.70:      | 00.00      |         |         |
| 1-Chlorooc                    | tadecane                | (60 - 140)       | 68.0%             | 105%             | 90.5%              | 94.5%    | 81.5%       | 83.0%      | 76.0%   | 76.5%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks. #True MDL/PQL = listed MDL/PQL X dilution factor.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE                  | DATE     | DATE       | DATE      | DATE     | · <u>-</u> •····   |          |            |            |           |         |
|-------------------------|----------|------------|-----------|----------|--------------------|----------|------------|------------|-----------|---------|
| LOG NO.                 | SAMPLED  | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION |          |            | ID         | RUN BATCH |         |
| LN05810                 | 05/16/13 | 05/17/13   | 05/30/13  | 06/04/13 | KLF-4-5            |          | GC Agilent | 060413     |           |         |
| LN05811                 | 05/16/13 | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-10 |            | GC Agilent | 060       | )413    |
| LN05812                 | 05/16/13 | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-15 |            | GC Agilent | 060       | )413    |
| LN05813                 | 05/16/13 | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-20 |            | GC Agilent | 060       | 0413    |
| LN05814                 | 05/16/13 | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-25 |            | GC Agilent | 060       | 0413    |
| LN05815                 | 05/16/13 | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-30 |            | GC Agilent | 060       | 0413    |
| LN05816                 | 05/16/13 | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-35 |            | GC Agilent | 060       | 0413    |
|                         |          |            |           |          |                    | 4000777  |            |            | r         |         |
|                         |          | MDL / PQL  |           | LN05810  | LN05811            | LN05812  | LN05813    | LN05814    | LN05815   | LN05816 |
|                         |          | mg/kg      |           | mg/kg    | mg/kg              | mg/kg    | mg/kg      | mg/kg      | mg/kg     | mg/kg   |
| Dilution Fac            | tor      |            |           | 11       | 1                  | 1        | 1          | 1          | 1         | 1       |
| ТЕРН (С9                | - C36)   | 4 / 20     |           | ND       | ND                 | ND       | ND         | ND         | ND        | ND      |
| DRO (C10                | - C28)   | 29 / 145   |           | ND       | ND                 | ND       | ND         | ND         | ND        | ND      |
| MOTOR                   | OIL      | 35 / 175   |           | ND       | NĐ                 | ND       | ND         | ND         | ND        | ND      |
| Quality Control Data    |          |            |           |          |                    |          |            |            |           |         |
| Surrogate/Internal Std. |          | % ACP      |           | % RC     | % RC               | % RC     | % RC       | % RC       | % RC      | % RC    |
|                         |          |            |           |          |                    |          |            |            |           |         |
| 1-Chlorooct             | adecane  | (60 - 140) |           | 94.5%    | 87.5%              | 76.5%    | 78.0%      | 85.0%      | 93.0%     | 83.5%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE         | DATE       | DATE      | DATE     |                    |          |            | INST.      |         |         |
|--------------|--------------|------------|-----------|----------|--------------------|----------|------------|------------|---------|---------|
| LOG NO.      | SAMPLED      | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION |          | ID         | RUN BATCH  |         |         |
| LN05817      | 05/16/13     | 05/17/13   | 05/30/13  | 06/04/13 | KLF-4-40           |          | GC Agilent | 060413     |         |         |
| LN05818      | 05/16/13     | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-45 |            | GC Agilent | 060     | 413     |
| LN05819      | 05/16/13     | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-50 |            | GC Agilent | 060     | 413     |
| LN05820      | 05/16/13     | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-55 | ;<br>      | GC Agilent | 060     | 413     |
| LN05821      | 05/16/13     | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-60 |            | GC Agilent | 060     | 413     |
| LN05822      | 05/16/13     | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-65 |            | GC Agilent | 060     | 413     |
| LN05823      | 05/16/13     | 05/17/13   | 05/30/13  | 06/04/13 |                    | KLF-4-70 |            | GC Agilent | 060413  |         |
|              |              |            |           |          |                    |          |            |            |         |         |
|              |              | MDL / PQL  |           | LN05817  | LN05818            | LN05819  | LN05820    | LN05821    | LN05822 | LN05823 |
|              |              | mg/kg      |           | mg/kg    | mg/kg              | mg/kg    | mg/kg      | mg/kg      | mg/kg   | mg/kg   |
| Dilution Fac | ctor         |            |           | 1        | 1                  | 1        | 1          | 1          | 1       | 1       |
| ТЕРН (С9     | ) - C36)     | 4 / 20     |           | ND       | ND                 | ND       | ND         | ND         | ND      | ND      |
| DRO (C10     | ) - C28)     | 29 / 145   |           | ND       | ND                 | ND       | ND         | ND         | ND      | ND      |
| МОТОБ        | R OIL        | 35 / 175   |           | ND       | ND                 | ND       | ND         | ND         | ND      | ND      |
| Quality      | / Control D  | ata_       |           |          |                    |          |            | j<br>      |         |         |
| Surrogate/In | nternal Std. | % ACP      |           | % RC     | % RC               | % RC     | % RC       | % RC       | % RC    | % RC    |
|              |              |            |           |          |                    |          |            |            |         |         |
| 1-Chlorooct  | adecane      | (60 - 140) |           | 81.5%    | 85.0%              | 91.0%    | 92.0%      | 83.5%      | 92.0%   | 95.5%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

#### I. Sample Duplicate

| SAMPLE LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPL        | E DESCRIPTION | INST.      | RUN BATCH |
|----------------|-----------------|--------------------|-------------------|------------------|--------------|---------------|------------|-----------|
| LN05796 DUP    | 05/16/13        | 05/17/13           | 05/21/13          | 06/04/13         |              | KLF-5-5       | GC Agilent | 060403    |
| LN05805 DUP    | 05/16/13        | 05/17/13           | 05/30/13          | 06/04/13         |              | KLF-5-50      | GC Agilent | 060413    |
|                |                 |                    |                   |                  |              |               |            |           |
|                |                 |                    |                   |                  |              |               |            |           |
|                |                 |                    |                   |                  |              |               |            |           |
|                |                 |                    |                   |                  |              |               |            |           |
|                |                 |                    |                   |                  |              |               | <u> </u>   |           |
|                |                 |                    |                   | LN05796          | LN05805      |               | 1          |           |
|                |                 | MDL / PQL<br>mg/kg |                   | DUP<br>mg/kg     | DUP<br>mg/kg |               |            |           |
| Dilution       | Factor          | mg xg              | ·                 | 1                | 1            |               |            |           |
| TEPH (C9       |                 | 4 / 20             | <del>,</del>      | 412              | ND           |               |            |           |
| DRO (C10       |                 | 29 / 145           |                   | 130 J            | ND           |               |            |           |
| МОТОН          | R OIL           | 35 / 175           |                   | 282              | ND           |               |            |           |
|                |                 |                    |                   |                  |              |               |            |           |
| Quality        | Control D       | ata_               |                   |                  |              |               |            |           |
|                |                 |                    |                   |                  |              |               |            |           |
| Surrogate/Ir   | nternal Std.    | % ACP              |                   | % RC             | % RC         |               |            |           |
| 1 Chlans4      |                 | (60 140)           |                   | 104%             | 92.0%        | ,             |            |           |
| 1-Chlorooct    | adecane         | (60 - 140)         |                   | 10470            | 92.0%        |               |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

#True MDL/PQL = listed MDL/PQL X dilution factor.

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH  | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Range |
|---------|------------|---------------|-------------|--------|-------|------------------|
| ТЕРН    | <br>060413 | 6/4/2013      | 280         | 343    | 123   | 70 - 130         |
| DRO     | 060413     | 6/4/2013      | 500         | 419    | 83.8  | 70 - 130         |
| МО      | <br>060413 | 6/4/2013      | 500         | 374    | 74.8  | 70 - 130         |
|         |            |               |             |        |       |                  |
|         | <br>       |               |             |        |       |                  |
|         |            |               |             |        |       |                  |
|         |            |               |             |        |       |                  |
|         |            |               |             |        |       |                  |
|         |            |               |             |        |       |                  |
|         |            |               |             |        |       |                  |
|         |            |               | ·           |        |       |                  |
|         |            |               |             |        | <br>  |                  |
|         |            |               |             |        |       |                  |

Analysts

J. Yi

Reviewed by

R. Gentallan / 12/13

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE         | DATE       | DATE      | DATE     |         |          |         | INST.      |         |         |
|--------------|--------------|------------|-----------|----------|---------|----------|---------|------------|---------|---------|
| LOG NO.      | SAMPLED      | RECEIVED   | EXTRACTED | ANALYZED | SAMPL   | E DESCRI | IPTION  | ID         | RUN E   | BATCH   |
| LN05904      | 05/20/13     | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-7-5  |         | GC Agilent | 060     | 313     |
| LN05905      | 05/20/13     | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-7-10 |         | GC Agilent | 060     | 313     |
| LN05906      | 05/20/13     | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-7-15 |         | GC Agilent | 060     | 313     |
| LN05907      | 05/20/13     | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-7-20 |         | GC Agilent | 060     | 313     |
| LN05908      | 05/20/13     | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-7-25 |         | GC Agilent | 060     | 313     |
| LN05909      | 05/20/13     | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-7-30 |         | GC Agilent | 060     | 313     |
| LN05910      | 05/20/13     | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-7-35 |         | GC Agilent | 060     | 313     |
|              |              |            |           |          |         |          |         |            | T       |         |
|              |              | MDL / PQL  | MB        | LN05904  | LN05905 | LN05906  | LN05907 | LN05908    | LN05909 | LN05910 |
|              |              | mg/kg      | mg/kg     | mg/kg    | mg/kg   | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   |
| Dilution     | Factor       |            | 1         | 1        | 1       | 1        | 11      | 1          | 1       | 1       |
| ТЕРН (С9     | 9 - C36)     | 4 / 20     | ND        | ND       | ND      | ND       | ND      | ND         | ND      | ND      |
| DRO (C10     | O - C28)     | 29 / 145   | ND        | ND       | ND      | ND       | ND      | ND         | ND      | ND      |
| MOTOI        | ROIL         | 35 / 175   | ND        | ND       | ND      | ND       | ND      | ND         | ND      | ND      |
|              |              |            |           |          |         |          |         |            |         |         |
| Quality      | y Control D  | <u>ata</u> |           |          |         |          |         |            |         |         |
|              |              |            | MB        |          |         |          |         |            |         | .,_     |
| Surrogate/Ir | nternal Std. | % ACP      | % RC      | % RC     | % RC    | % RC     | % RC    | % RC       | % RC    | % RC    |
|              |              |            |           |          |         |          |         |            |         |         |
| 1-Chlorooct  | adecane      | (60 - 140) | 103%      | 91.0%    | 94.0%   | 81.0%    | 112%    | 89.5%      | 115%    | 82.5%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

 $ACP \ \% = Acceptable \ Range \ of \ Percent$ 

% RC = % Recovery

MB - Method Blank

#True MDL/PQL = listed MDL/PQL X dilution factor.

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE        | DATE       | DATE      | DATE     | CAMPI        | P DECCD  | IDTION  | INST.      | DIBL    |         |
|--------------|-------------|------------|-----------|----------|--------------|----------|---------|------------|---------|---------|
| LOG NO.      | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMPL        | E DESCR  | IPTION  | ID         | RUN     | ВАТСН   |
| LN05911      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 | KLF-7-40     |          |         | GC Agilent | 060     | )313    |
| LN05912      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |              | KLF-7-45 |         | GC Agilent | 060     | 0313    |
| LN05913      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |              | KLF-7-50 |         | GC Agilent | 060     | )313    |
| LN05914      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |              | KLF-7-55 |         | GC Agilent | 060     | 0313    |
| LN05915      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |              | KLF-7-60 |         | GC Agilent | 060     | 0313    |
| LN05916      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 | <del>,</del> | KLF-7-65 |         | GC Agilent | 060     | 0313    |
| LN05917      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |              | KLF-7-70 |         | GC Agilent | 066     | 0313    |
|              |             |            |           |          |              |          |         | ı          |         |         |
|              |             | MDL / PQL  |           | LN05911  | LN05912      | LN05913  | LN05914 | LN05915    | LN05916 | LN05917 |
|              |             | mg/kg      |           | mg/kg    | mg/kg        | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   |
| Dilution 1   | Factor      |            |           | 1        | 1            | 11       | 1       | 1          | 1       | 1       |
| ТЕРН (С9     | - C36)      | 4 / 20     |           | ND       | ND           | ND       | ND      | ND         | ND      | ND      |
| DRO (C10     | - C28)      | 29 / 145   |           | ND       | ND           | ND       | ND      | ND         | ND      | ND      |
| MOTOR        | OIL         | 35 / 175   |           | ND       | ND           | ND       | ND      | NĐ         | ND      | ND      |
| Quality      | Control D   | ata_       |           |          |              |          |         |            |         |         |
| Surrogate/In | ternal Std. | % ACP      |           | % RC     | % RC         | % RC     | % RC    | % RC       | % RC    | % RC    |
|              |             |            |           |          |              |          |         |            |         |         |
| 1-Chloroocta | adecane     | (60 - 140) |           | 110%     | 78.0%        | 91.0%    | 117%    | 111%       | 131%    | 109%    |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks. #True MDL/PQL = listed MDL/PQL X dilution factor.

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

## I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.      | RUN BATCH |
|-------------------|-----------------|------------------|-------------------|------------------|--------------------|------------|-----------|
| LN05905 DUP       | 05/20/13        | 05/20/13         | 06/03/13          | 06/03/13         | KLF-7-10           | GC Agilent | 060313    |
|                   |                 |                  |                   |                  |                    |            |           |
| ,                 |                 |                  |                   |                  |                    | tration    |           |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   |                  |                    |            |           |
|                   |                 |                  |                   | LN05905          |                    |            |           |
|                   |                 | MDL / PQL        |                   | DUP              |                    |            |           |
|                   |                 | mg/kg            |                   | mg/kg            |                    |            |           |
| Dilution          | Factor          |                  |                   | 1                |                    |            |           |
| ТЕРН (С9          | 9 - C36)        | 4 / 20           |                   | ND               |                    |            |           |
| DRO (C10          | ) - C28)        | 29 / 145         |                   | ND               |                    |            |           |
| МОТОР             | ROIL            | 35 / 175         |                   | ND               |                    |            |           |
| Quality           | / Control D     | ata_             |                   |                  |                    |            |           |
| Surrogate/In      | nternal Std.    | % ACP            |                   | % RC             |                    |            |           |
|                   |                 |                  |                   | <br>             |                    |            |           |
| 1-Chlorooct       | adecane         | (60 - 140)       |                   | 113%             |                    |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

#True MDL/PQL = listed MDL/PQL X dilution factor.

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH                               | DATE ANALYZED  | SPIKE CONC. | RESULT | %REC. | Acceptable Range |
|---------|-----------------------------------------|----------------|-------------|--------|-------|------------------|
| ТЕРН    | 060313                                  | 6/3/2013       | 280         | 211    | 75.4  | 70 - 130         |
| DRO     | 060313                                  | 6/3/2013       | 500         | 364    | 72.8  | 70 - 130         |
| МО      | 060313                                  | 6/3/2013       | 500         | 386    | 77.2  | 70 - 130         |
|         |                                         |                |             |        |       |                  |
|         |                                         |                |             |        |       |                  |
|         |                                         |                |             |        |       |                  |
|         |                                         |                |             |        |       |                  |
|         |                                         |                |             |        |       |                  |
|         |                                         | ,              |             |        |       |                  |
|         |                                         |                |             |        |       |                  |
|         |                                         |                |             |        |       |                  |
| 1,      | *************************************** | 1              |             |        |       | 1                |
|         |                                         | · <del>-</del> |             |        |       |                  |

Analysts

J. Yi

Reviewed by

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE        | DATE       | DATE      | DATE     | -       |          |         | INST.      |         |         |
|--------------|-------------|------------|-----------|----------|---------|----------|---------|------------|---------|---------|
| LOG NO.      | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMPL   | E DESCR  | IPTION  | ID         | RUN E   | BATCH   |
| LN05918#     | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-6-5  |         | GC Agilent | 060     | 313     |
| LN05919      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-6-10 |         | GC Agilent | 060     | 313     |
| LN05920      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-6-15 |         | GC Agilent | 060     | 313     |
| LN05921      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 | <u></u> | KLF-6-20 |         | GC Agilent | 060     | 313     |
| LN05922      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-6-25 |         | GC Agilent | 060     | 313     |
| LN05923      | 05/20/13    | 05/20/13   | 06/03/13  | 06/03/13 |         | KLF-6-30 |         | GC Agilent | 060     | 313     |
| LN05924      | 05/20/13    | 05/20/13   | 06/03/13  | 06/05/13 |         | KLF-6-35 |         | GC Agilent | 060     | 0513    |
|              |             | ,          |           |          |         |          |         | ,          |         | ,       |
|              |             | MDL / PQL  | MB        | LN05918# | LN05919 | LN05920  | LN05921 | LN05922    | LN05923 | LN05924 |
|              |             | mg/kg      | mg/kg     | mg/kg    | mg/kg   | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   |
| Dilution F   | Factor      |            | 1         | 3        | 1       | 1        | 1       | 1          | 1       | 1       |
| ТЕРН (С9     | - C36)      | 4/20       | ND        | 1710     | ND      | ND _     | ND      | ND         | ND      | ND      |
| DRO (C10     | - C28)      | 29 / 145   | ND        | 531      | ND      | ND       | ND      | ND         | ND      | ND      |
| MOTOR        | OIL         | 35 / 175   | ND        | 1180     | ND      | ND       | ND      | ND         | ND      | ND      |
|              |             |            |           |          | ,       |          |         |            |         | !       |
| Quality      | Control D   | ata        |           |          |         |          |         |            |         |         |
|              |             |            | MB        | !<br>:   |         |          |         | <u> </u>   |         |         |
| Surrogate/In | ternal Std. | % ACP      | % RC      | % RC     | % RC    | % RC     | % RC    | % RC       | % RC    | % RC    |
|              |             |            |           |          |         |          |         |            |         |         |
| 1-Chloroocta | adecane     | (60 - 140) | 103%      | 108%     | 110%    | 67.0%    | 94.0%   | 131%       | 128%    | 94.0%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

#True MDL/PQL = listed MDL/PQL X dilution factor.

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE        | DATE               | DATE                                  | DATE      | DATE     |         |          |         | INST.      |         |          |
|---------------|--------------------|---------------------------------------|-----------|----------|---------|----------|---------|------------|---------|----------|
| LOG NO.       | SAMPLED            | RECEIVED                              | EXTRACTED | ANALYZED | SAMPL   | E DESCR  | IPTION  | ID         | RUN E   | ВАТСН    |
| LN05925       | 05/20/13           | 05/20/13                              | 06/03/13  | 06/05/13 |         | KLF-6-40 |         | GC Agilent | 060     | 513      |
| LN05926       | 05/20/13           | 05/20/13                              | 06/03/13  | 06/05/13 |         | KLF-6-45 |         | GC Agilent | 060     | 513      |
| LN05927       | 05/20/13           | 05/20/13                              | 06/03/13  | 06/05/13 |         | KLF-6-50 |         | GC Agilent | 060     | 513      |
| LN05928       | 05/20/13           | 05/20/13                              | 06/03/13  | 06/05/13 | ·       | KLF-6-55 |         | GC Agilent | 060     | 513      |
| LN05929       | 05/20/13           | 05/20/13                              | 06/03/13  | 06/05/13 |         | KLF-6-60 |         | GC Agilent | 060     | 513      |
| LN05930       | 05/20/13           | 05/20/13                              | 06/03/13  | 06/05/13 | <br>    | KLF-6-65 |         | GC Agilent | 060     | 513      |
| LN05931       | 05/20/13           | 05/20/13                              | 06/03/13  | 06/05/13 | ·       | KLF-6-70 |         | GC Agilent | 060     | 513      |
|               |                    |                                       |           |          |         |          |         | , <u>-</u> |         |          |
|               |                    | MDL / PQL                             | MB        | LN05925  | LN05926 | LN05927  | LN05928 | LN05929    | LN05930 | LN05931  |
|               |                    | mg/kg                                 | mg/kg     | mg/kg    | mg/kg   | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg    |
| Dilution      | Factor             |                                       | 1         | 1        | 1       | 1        | 1       | 1          | 1       | 1        |
| ТЕРН (С       | 9 - C36)           | 4 / 20                                | ND        | ND       | ND      | ND       | ND      | ND         | ND      | ND       |
| DRO (C10      | ) - C28)           | 29 / 145                              | ND        | ND       | ND      | ND       | ND      | ND         | ND      | ND       |
| MOTOI         | ROIL               | 35 / 175                              | ND        | ND       | ND      | ND       | ND      | ND         | ND      | ND       |
|               |                    |                                       |           |          |         | :<br>    |         |            |         | :        |
| <u>Qualit</u> | <u>y Control D</u> | ata_                                  |           |          |         |          | !       | 1          | 1       |          |
|               |                    | · · · · · · · · · · · · · · · · · · · | MB        |          | ·       |          |         |            |         |          |
| Surrogate/I   | nternal Std.       | % ACP                                 | % RC      | % RC     | % RC    | % RC     | % RC    | % RC       | % RC    | % RC     |
|               |                    |                                       |           |          |         |          | !<br>   | :          |         | <u> </u> |
| 1-Chlorooc    | tadecane           | (60 - 140)                            | 93.0%     | 109%     | 84.0%   | 91.0%    | 95.0%   | 78.5%      | 105%    | 112%     |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks. #True MDL/PQL = listed MDL/PQL X dilution factor.

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

#### I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED  | DATE<br>ANALYZED | SAMPLE DESCRIPTION                    | INST.                                 | RUN BATCH        |
|-------------------|-----------------|------------------|--------------------|------------------|---------------------------------------|---------------------------------------|------------------|
| LN05924 DUP       | 05/20/13        | 05/20/13         | 06/03/13           | 06/05/13         | KLF-6-35                              | GC Agilent                            | 060513           |
|                   |                 | <u>.</u><br>     | ·· <del>-</del> ·· | <u> </u>         |                                       |                                       |                  |
|                   |                 |                  |                    | ·                |                                       |                                       |                  |
|                   |                 | ·<br>:           |                    | ·<br>·           | · · · · · · · · · · · · · · · · ·     | ļ-                                    |                  |
|                   |                 |                  | :<br><u></u>       |                  |                                       | · · · · · · · · · · · · · · · · · · · |                  |
|                   |                 |                  |                    |                  |                                       |                                       |                  |
|                   |                 | i                |                    | LN05924          |                                       |                                       |                  |
|                   |                 | MDL / PQL        |                    | DUP              |                                       |                                       |                  |
|                   |                 | mg/kg            | - · <del></del>    | mg/kg            |                                       | ļ                                     |                  |
| Dilution I        | Factor          |                  |                    | 1                |                                       |                                       |                  |
| ТЕРН (С9          | - C36)          | 4 / 20           |                    | ND               |                                       | :                                     |                  |
| DRO (C10          | - C28)          | 29 / 145         |                    | ND               | · · · · · · · · · · · · · · · · · · · | ·····                                 | ·                |
| MOTOR             | OIL             | 35 / 175         |                    | ND               |                                       |                                       |                  |
| Quality           | Control D       | Oata_            |                    |                  |                                       |                                       | ;<br>;<br>;<br>; |
| Surrogate/In      | ternal Std.     | % ACP            |                    | % RC             |                                       |                                       |                  |
|                   |                 |                  |                    |                  |                                       |                                       | ·<br>            |
| 1-Chlorooct       | adecane         | (60 - 140)       | :<br>!             | 105%             |                                       |                                       | <u> </u>         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

#True MDL/PQL = listed MDL/PQL X dilution factor.

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE |   | RUN BATCH                                     | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Range |
|---------|---|-----------------------------------------------|---------------|-------------|--------|-------|------------------|
| ТЕРН    | : | 060513                                        | 6/5/2013      | 280         | 215    | 76.8  | 70 - 130         |
| DRO     |   | 060513                                        | 6/5/2013      | 500         | 409    | 81.8  | 70 - 130         |
| МО      |   | 060513                                        | 6/5/2013      | 500         | 383    | 76.6  | 70 - 130         |
|         |   |                                               |               |             |        |       |                  |
|         |   |                                               |               | 4.33        | 1      |       |                  |
|         |   |                                               |               |             |        |       |                  |
|         |   |                                               |               |             |        |       | 1                |
|         |   | manus 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |               |             |        |       |                  |
|         |   |                                               |               |             |        |       | ļ                |
|         |   |                                               |               |             | !      |       |                  |
|         |   |                                               |               |             | !<br>! |       |                  |
|         |   |                                               |               |             |        |       |                  |
|         |   |                                               |               |             |        |       |                  |

Analysts

J. Yi

Reviewed by

## ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED    | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.      | RUN BATCH                             |
|-------------------|--------------------|------------------|-------------------|------------------|--------------------|------------|---------------------------------------|
| LN05932           | 05/20/13           | 05/20/13         | 06/03/13          | 06/05/13         | SOIL DRUM PROFILE  | GC Agilent | 060513                                |
|                   |                    |                  |                   |                  |                    |            |                                       |
|                   |                    |                  |                   |                  |                    |            |                                       |
|                   |                    |                  |                   |                  |                    |            |                                       |
|                   |                    |                  |                   |                  |                    |            |                                       |
|                   |                    |                  |                   |                  |                    |            | · · · · · · · · · · · · · · · · · · · |
| , <del>,</del>    |                    |                  |                   |                  |                    |            |                                       |
|                   |                    |                  |                   | L                |                    | <u></u>    |                                       |
|                   |                    | MDL / PQL        | MB                | LN05932          |                    |            |                                       |
|                   |                    | mg/kg            | mg/kg             | mg/kg            |                    |            |                                       |
| Dilution          | Factor             |                  | 1                 | . 1              |                    |            | l l                                   |
| TEPH (C9          | 9 - C36)           | 4/20             | ND                | 1370             |                    |            |                                       |
| DRO (C10          | 0 - C28)           | 29 / 145         | ND                | 890              |                    |            |                                       |
| МОТОІ             | R OIL              | 35 / 175         | ND                | 477              |                    |            |                                       |
|                   |                    |                  |                   |                  |                    |            | -                                     |
| Quality           | <u>y Control D</u> | ata_             |                   |                  |                    |            |                                       |
|                   |                    | ,                | MB                |                  |                    |            |                                       |
| Surrogate/Ir      | nternal Std.       | % ACP            | % RC              | % RC             |                    |            |                                       |
|                   |                    |                  |                   |                  |                    |            |                                       |
| 1-Chlorooct       | adecane            | (60 - 140)       | 93.0%             | 104%             |                    |            |                                       |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

 $\% \, RC = \% \, Recovery$ 

MB - Method Blank

#True MDL/PQL = listed MDL/PQL X dilution factor.

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Range |
|---------|-----------|---------------|-------------|--------|-------|------------------|
| ТЕРН    | 060513    | 6/5/2013      | 280         | 215    | 76.8  | 70 - 130 .       |
| DRO     | 060513    | 6/5/2013      | 500         | 409    | 81.8  | 70 - 130         |
| МО      | 060513    | 6/5/2013      | 500         | 383    | 76.6  | 70 - 130         |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         | ***       |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        | 1     |                  |
|         |           |               |             |        | ~~    |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
| į       |           |               |             |        |       | <u> </u>         |

Analysts

J. Yi

Reviewed by

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.                                 | RUN BATCH                             |
|-------------------|-----------------|------------------|-------------------|------------------|--------------------|---------------------------------------|---------------------------------------|
| LN05577           | 05/13/13        | 05/13/13         | 05/17/13          | 06/05/13         | QCEB               | GC Agilent                            | 060513                                |
|                   |                 | :                |                   |                  |                    |                                       |                                       |
|                   |                 |                  |                   |                  |                    |                                       |                                       |
|                   |                 |                  |                   |                  |                    |                                       |                                       |
|                   |                 |                  |                   |                  |                    | ļ                                     |                                       |
|                   |                 | :<br>!<br>!      |                   |                  |                    |                                       |                                       |
|                   |                 | !                |                   |                  |                    | · · · · · · · · · · · · · · · · · · · |                                       |
|                   |                 |                  |                   |                  |                    | · · · · · · · · · · · · · · · · ·     |                                       |
|                   |                 | MDL / PQL        | MB                | LN05577          |                    |                                       |                                       |
|                   |                 | mg/L             | mg/L              | mg/L             |                    | ļ l                                   |                                       |
| Dilution I        | actor           | :                | 1                 | 1                |                    |                                       | !                                     |
| ТЕРН (С9          | - C36)          | 0.1 / 0.5        | ND                | ND               |                    |                                       | · · · · · · · · · · · · · · · · · · · |
| DRO (C10          | - C28)          | 0.5 / 2.5        | ND                | ND               |                    | <u> </u>                              | <u> </u>                              |
| MOTOR             | OIL             | 0.3 / 1.5        | ND                | ND               |                    |                                       | -                                     |
|                   |                 |                  |                   |                  |                    |                                       |                                       |
| Quality           | Control D       | ata_             |                   |                  |                    |                                       |                                       |
|                   |                 |                  | MB                | !                |                    |                                       |                                       |
| Surrogate/In      | ternal Std.     | % ACP            | % RC              | % RC             | <u> </u>           | +                                     | <u> </u>                              |
|                   |                 |                  |                   |                  |                    | .                                     |                                       |
| 1-Chloroocta      | adecane         | (60 - 140)       | 86.5%             | 81.5%            |                    |                                       | ····                                  |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8165 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/L

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Range |
|---------|-----------|---------------|-------------|--------|-------|------------------|
| ТЕРН    | 060513    | 6/5/2013      | 2.8         | 2.01   | 71.8  | 70 - 130         |
| DRO     | 060513    | 6/5/2013      | 5           | 4.54   | 90.8  | 70 - 130         |
| МО      | 060513    | 6/5/2013      | 5           | 5.25   | 105   | 70 - 130         |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               | -164117-    |        |       |                  |
| ///     |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       | 1                |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |

Analysts

J. Yi

Reviewed by

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPL   | E DESCRIPTION | INST.             | RUN BATCH |
|-------------------|-----------------|------------------|-------------------|------------------|---------|---------------|-------------------|-----------|
| LN05646           | 05/14/13        | 05/14/13         | 05/17/13          | 06/05/13         |         | QCEB          | GC Agilent        | 060513    |
| LN05660           | 05/14/13        | 05/14/13         | 05/17/13          | 06/05/13         | :       | QCFB          | GC Agilent        | 060513    |
|                   |                 |                  |                   |                  | !       |               |                   |           |
|                   |                 |                  |                   |                  |         |               | l i               |           |
|                   |                 |                  |                   |                  |         |               |                   |           |
| :                 |                 |                  |                   |                  |         |               |                   |           |
|                   |                 |                  |                   |                  |         |               |                   |           |
| ·                 |                 |                  |                   |                  |         |               |                   |           |
|                   | !               | MDL / PQL        | MB                | LN05646          | LN05660 |               |                   |           |
|                   |                 | mg/L             | mg/L              | mg/L             | mg/L    | <u>'</u>      |                   |           |
| Dilution F        | actor           | !                | 1                 | 1                | 1       |               |                   |           |
| ТЕРН (С9          | - C36)          | 0.1 / 0.5        | ND                | ND               | ND      |               | ·<br>             |           |
| DRO (C10          | - C28)          | 0.5 / 2.5        | ND                | ND               | ND      |               |                   |           |
| MOTOR             | OIL             | 0.3 / 1.5        | ND                | ND               | ND      |               |                   |           |
|                   |                 | :                |                   |                  |         | •             |                   |           |
| Quality           | Control D       | ata_             |                   |                  | !<br>!  |               |                   |           |
|                   |                 |                  | MB                |                  |         |               | <u>i</u> <u>l</u> |           |
| Surrogate/Int     | ernal Std.      | % ACP            | % RC              | % RC             | % RC    |               |                   | j<br>     |
|                   |                 |                  |                   |                  |         |               |                   |           |
| 1-Chloroocta      | decane          | (60 - 140)       | 86.5%             | 92.5%            | 88.0%   |               |                   |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8165 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/L

| ANALYTE | RUN BATCH  | DATE ANALYZED | SPIKE CONC. | RESULT   | %REC.    | Acceptable Range |
|---------|------------|---------------|-------------|----------|----------|------------------|
| ТЕРН    | <br>060513 | 6/5/2013      | 2.8         | 2.01     | 71.8     | 70 - 130         |
| DRO     | <br>060513 | 6/5/2013      | 5           | 4.54     | 90.8     | 70 - 130         |
| МО      | <br>060513 | 6/5/2013      | 55          | 5.25     | 105      | 70 - 130         |
|         |            |               |             |          |          |                  |
|         | <br>       |               |             |          |          |                  |
|         | <br>       |               |             |          |          |                  |
|         | <br>       |               |             |          | ļ        |                  |
|         |            |               |             |          |          |                  |
|         | <br>       |               |             | <u> </u> |          |                  |
|         | <br>       |               |             |          | <u> </u> |                  |
|         | <br>       | !             |             |          |          |                  |
|         |            |               |             | <u> </u> |          |                  |
|         |            |               |             |          |          |                  |

Analysts

J. Yi

Reviewed by

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE       | DATE         | DATE       | DATE      | DATE           | SAMPLE DESCRIPTION                    | INST.      | RUN BATCH |
|--------------|--------------|------------|-----------|----------------|---------------------------------------|------------|-----------|
| LOG NO.      | SAMPLED      | RECEIVED   | EXTRACTED | ANALYZED       |                                       |            |           |
| LN05739      | 05/15/13     | 05/15/13   | 05/17/13  | 06/05/13       | QCEB_                                 | GC Agilent | 060513    |
| LN05752      | 05/15/13     | 05/15/13   | 05/17/13  | 06/05/13       | QCFB                                  | GC Agilent | 060513    |
|              |              |            |           |                |                                       |            |           |
|              |              |            |           |                |                                       |            |           |
|              |              |            |           |                |                                       |            |           |
|              |              |            |           | <del></del>    | · · · · · · · · · · · · · · · · · · · | <u></u>    |           |
|              | — — — — — —  | <u> </u>   |           |                | !                                     | -          |           |
|              |              |            |           |                |                                       | <u> </u>   |           |
|              |              |            |           | , <del> </del> |                                       | ·,         |           |
|              |              | MDL / PQL  | MB        | LN05739        | LN05752                               |            |           |
|              |              | mg/L       | mg/L      | mg/L           | mg/L                                  |            | :<br>     |
| Dilution     | Factor       | !          | 1         | 1              | 1                                     |            |           |
| ТЕРН (С9     | 9 - C36)     | 0.1 / 0.5  | ND        | ND             | ND                                    | ;          |           |
| DRO (C10     | 0 - C28)     | 0.5 / 2.5  | ND        | ND             | ND                                    |            |           |
| MOTOI        | ROIL         | 0.3 / 1.5  | ND        | ND             | ND                                    |            | ı         |
|              |              |            |           |                |                                       |            |           |
| Quality      | y Control D  | oata_      |           |                |                                       |            |           |
|              |              | :          | MB        |                |                                       |            |           |
| Surrogate/In | nternal Std. | % ACP      | % RC      | % RC           | % RC                                  |            |           |
|              |              |            |           |                |                                       | <u> </u>   | :<br>!    |
| 1-Chlorooc   | tadecane     | (60 - 140) | 86.5%     | 84.5%          | 86.5%                                 |            | !         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

## I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED    | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.      | RUN BATCH |
|-------------------|--------------------|------------------|-------------------|------------------|--------------------|------------|-----------|
| LN05739 DUP       | 05/15/13           | 05/15/13         | 05/17/13          | 06/05/13         | QCEB               | GC Agilent | 060513    |
|                   |                    |                  |                   |                  |                    | <u> </u>   |           |
| i<br>i            |                    |                  |                   |                  |                    |            |           |
|                   |                    |                  |                   |                  |                    |            |           |
|                   |                    |                  |                   |                  |                    |            |           |
|                   |                    |                  |                   |                  |                    |            |           |
|                   |                    |                  |                   |                  |                    | <u> </u>   | ,         |
|                   |                    | Ţ                |                   | LN05739          |                    | <u> </u>   |           |
|                   |                    | MDL / PQL        |                   | DUP              |                    |            |           |
|                   |                    | mg/kg            |                   | mg/kg            |                    | <u> </u>   |           |
| Dilution          | Factor             |                  |                   | 11               |                    |            | <u> </u>  |
| ТЕРН (С9          | ) - C36)           | 0.1 / 0.5        |                   | ND               |                    |            |           |
| DRO (C10          | ) - C28)           | 0.5 / 2.5        |                   | ND               |                    |            |           |
| MOTOF             | ROIL               | 0.3 / 1.5        |                   | ND               |                    | ļ          | _         |
| Quality           | y Control <u>D</u> | <u>)ata</u>      |                   |                  |                    |            |           |
| Surrogate/Ii      | nternal Std.       | % ACP            |                   | % RC             |                    |            |           |
| 1-Chlorooct       | adecane            | (60 - 140)       | <u></u>           | 95.5%            |                    |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8165 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/L

| ,,           |           |               |             |        |            |                                         |
|--------------|-----------|---------------|-------------|--------|------------|-----------------------------------------|
| ANALYTE      | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC.      | Acceptable Range                        |
| ТЕРН         | 060513    | 6/5/2013      | 2.8         | 2.01   | 71.8       | 70 - 130                                |
| DRO          | 060513    | 6/5/2013      | 5           | 4.54   | 90.8       | 70 - 130                                |
| MO           | 060513    | 6/5/2013      | 5           | 5.25   | 105        | 70 - 130                                |
|              |           |               |             |        |            |                                         |
|              |           |               |             |        |            |                                         |
|              | 1         |               |             |        |            | ] · · · · · · · · · · · · · · · · · · · |
|              |           |               | ,           |        |            |                                         |
|              |           |               |             |        |            |                                         |
|              |           |               |             |        |            |                                         |
|              |           |               |             |        | l. <b></b> |                                         |
|              |           |               |             |        |            |                                         |
|              |           |               |             |        |            |                                         |
|              |           |               |             |        |            |                                         |
| <b> </b>   • |           |               |             | 1      | :          |                                         |

Analysts

J. Yi

Reviewed by

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPL   | E DESCRIPTION | INST.      | RUN BATCH |
|-------------------|-----------------|------------------|-------------------|------------------|---------|---------------|------------|-----------|
| LN05824           | 05/16/13        | 05/16/13         | 05/17/13          | 06/05/13         |         | QCFB          | GC Agilent | 060513    |
| LN05825           | 05/16/13        | 05/16/13         | 05/17/13          | 06/05/13         |         | QCEB          | GC Agilent | 060513    |
|                   |                 |                  |                   |                  |         |               |            |           |
|                   |                 |                  |                   |                  |         |               |            | ·         |
|                   |                 |                  |                   |                  | :       |               |            |           |
|                   |                 |                  |                   |                  |         |               |            | <u> </u>  |
|                   |                 |                  |                   |                  | l       |               | !          |           |
|                   |                 |                  |                   |                  | :       |               | <u> </u>   |           |
|                   |                 | MDL / PQL        | MB                | LN05824          | LN05825 |               |            |           |
|                   |                 | mg/L             | mg/L              | mg/L             | mg/L    | ;             |            |           |
| Dilution          | Factor          |                  | 1                 | 1                | 1       |               |            |           |
| ТЕРН (С9          | 9 - C36)        | 0.1 / 0.5        | ND                | ND               | ND      |               |            |           |
| DRO (C10          | 0 - C28)        | 0.5 / 2.5        | ND                | ND               | ND      |               |            |           |
| MOTOR             | ROIL            | 0.3 / 1.5        | ND                | ND               | ND      |               |            |           |
|                   |                 |                  |                   |                  |         |               |            |           |
| Quality           | y Control D     | ata_             |                   |                  |         |               |            |           |
|                   |                 |                  | MB                |                  | :       | ļ             | !          |           |
| Surrogate/Ii      | nternal Std.    | % ACP            | % RC              | % RC             | % RC    |               |            |           |
|                   |                 |                  |                   |                  |         |               |            |           |
| 1-Chlorooct       | tadecane        | (60 - 140)       | 86.5%             | 86.5%            | 98.5%   | !             |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8165 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/L

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC.         | Acceptable Range |
|---------|-----------|---------------|-------------|--------|---------------|------------------|
| ТЕРН    | 060513    | 6/5/2013      | 2.8         | 2.01   | 71.8          | 70 - 130         |
| DRO     | 060513    | 6/5/2013      | 5           | 4.54   | 90.8          | 70 - 130         |
| МО      | 060513    | 6/5/2013      | 5           | 5.25   | 105           | 70 - 130         |
|         |           |               |             |        |               |                  |
|         |           |               |             |        |               |                  |
|         |           |               |             |        |               |                  |
|         |           |               |             |        |               | •                |
|         |           |               |             |        |               |                  |
|         |           |               | •           |        |               |                  |
|         |           |               |             |        |               |                  |
|         |           |               |             |        |               |                  |
|         |           |               |             | ļ      | ļ. <u>.</u> , |                  |
|         |           |               |             |        |               |                  |

Analysts

J. Yi

Reviewed by

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPL   | E DESCRIP | TION | INST.      | RUN BATCH |
|----------------|-----------------|--------------------|-------------------|------------------|---------|-----------|------|------------|-----------|
| LN05901        | 05/20/13        | 05/20/13           | 05/24/13          | 06/05/13         |         | QCEB      |      | GC Agilent | 060513    |
| LN05902        | 05/20/13        | 05/20/13           | 05/24/13          | 06/05/13         |         | QCFB      |      | GC Agilent | 060513    |
|                |                 |                    |                   |                  |         |           |      |            |           |
|                |                 |                    | <u></u>           |                  | i       |           |      |            |           |
|                |                 |                    |                   |                  |         |           |      |            |           |
|                |                 |                    |                   |                  |         |           |      | <u> </u>   |           |
| <u> </u>       |                 |                    |                   |                  |         |           |      |            |           |
|                |                 |                    |                   | •                |         |           |      |            |           |
|                |                 | MDL / PQL          | MB                | LN05901          | LN05902 |           |      |            |           |
|                |                 | mg/L               | mg/L              | mg/L             | mg/L    |           |      |            |           |
| Dilution F     | actor           |                    | 1                 | 1                | 1       |           |      | <u> </u>   |           |
| ТЕРН (С9       | - C36)          | 0.1 / 0.5          | ND                | ND               | ND      |           |      |            |           |
| DRO (C10       | - C28)          | 0.5 / 2.5          | ND                | ND               | ND      |           |      |            |           |
| MOTOR          | OIL             | 0.3 / 1.5          | ND                | ND               | ND      |           |      |            |           |
|                |                 |                    |                   |                  | :       |           |      |            |           |
| Quality        | Control D       | ata_               |                   |                  |         |           |      |            |           |
|                |                 |                    | MB                |                  |         |           |      |            |           |
| Surrogate/Int  | ernal Std.      | % ACP              | % RC              | % RC             | % RC    |           |      |            |           |
|                |                 |                    |                   |                  |         |           |      |            |           |
| 1-Chloroocta   | decane          | (60 - 140 <u>)</u> | 89.5%             | 85.5%            | 85.0%   |           |      |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

#### I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED                     | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.      | RUN BATCH |
|-------------------|-----------------|------------------|---------------------------------------|------------------|--------------------|------------|-----------|
| LN05902 DUP       | 05/20/13        | 05/20/13         | 05/24/13                              | 06/05/13         | QCFB               | GC Agilent | 060513    |
|                   |                 |                  |                                       |                  |                    |            |           |
|                   |                 |                  |                                       |                  |                    |            |           |
|                   |                 |                  |                                       |                  |                    |            |           |
|                   |                 | !                | <u> </u>                              |                  |                    | -          |           |
|                   |                 | :                |                                       |                  |                    |            |           |
| į                 |                 |                  |                                       |                  |                    |            |           |
|                   |                 | ,, <del></del>   | · · · · · · · · · · · · · · · · · · · | LN05902          |                    |            | [         |
|                   |                 | MDL / PQL        |                                       | DUP              |                    |            |           |
| · · · · · ·       |                 | mg/kg            |                                       | mg/kg            | <u> </u>           |            |           |
| Dilution 1        | Factor          |                  |                                       | 1                |                    |            |           |
| ТЕРН (С9          | - C36)          | 0.1 / 0.5        |                                       | ND               | <u> </u>           |            |           |
| DRO (C10          | ) - C28)        | 0.5 / 2.5        | <u>;</u>                              | ND :             |                    |            |           |
| MOTOR             | OIL             | 0.3 / 1.5        | :                                     | ND ;             |                    | -          |           |
| Quality           | Control D       | ata_             | :                                     |                  |                    |            |           |
| Surrogate/In      | iternal Std.    | % ACP            | :                                     | % RC             |                    |            |           |
| 1-Chlorooct       | adecane         | (60 - 140)       |                                       | 85.5%            |                    |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

 $\% \, RC = \% \, Recovery$ 

## QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8165 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/L

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Range |
|---------|-----------|---------------|-------------|--------|-------|------------------|
| ТЕРН    | 060513    | 6/5/2013      | 2.8         | 2.25   | 80.4  | 70 - 130         |
| DRO     | 060513    | 6/5/2013      | 5           | 4.63   | 92.6  | 70 - 130         |
| мо      | 060513    | 6/5/2013      | 5           | 5.14   | 103   | 70 - 130         |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       | .=               |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       |                  |
|         |           |               |             |        |       | \ <u>\</u>       |
|         |           |               |             |        |       |                  |

Analysts

J. Yi

Reviewed by

## ATTACHMENT #3

Total Recoverable Petroleum Hydrocarbons
(TRPH)
EPA METHOD 418.1
&
EPA METHOD 1664B
Soil & Water

## CITY OF LOS ANGELES, DEPARTMENT OF WATER & POWER ENVIRONMENTAL LABORATORY

#### CASE NARRATIVE

PROJECT: FIGUEROA PUMPING STATION

#### METHODS 418.1 TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (TRPH)

#### 1. Holding Time

Analytical holding time was met.

#### 2. Method Blank

There was no contamination detected at reporting level.

#### 3. Lab Control Sample

Recoveries were within QC limits.

#### 4. Matrix Spike/Matrix Spike Duplicate

Samples LN05588, LN05658, LN05748, LN05658, LN05812, LN05822, LN05910, and LN05930 were analyzed for MS/MSD. Recoveries were within QC limits.

#### 5. Calibration

Initial calibration was performed at five different concentrations. The percent relative standard deviation (% RSD) was within 15%. Continuing calibration check standards were within QC limits.

#### 6. Sample Analysis

The soil samples were analyzed according to the prescribed QC procedures. Samples were extracted with solvent and analyzed by infrared spectrophotometry. Petroleum hydrocarbons were detected on samples LN05578, LN05648, LN05649, LN05796, and LN05918. Trace amounts of petroleum hydrocarbons detected some samples were below reporting level..

The water samples were not analyzed by EPA Method 418.1 as requested in the Chain-of-Custody in reference to the Method Update Rule of March 12, 2007. However, the samples were analyzed using an alternate method EPA 1664B (HEM; Oil and Grease) without silica gel treatment. All sample results were free of contamination.

Matrix: Soil

Page 1 of 1 COC No.: 13-1161

Foxboro Miran 1FF

Project: FIGUEROA PUMPING STATION Instrument I.D.:

Collection Date: 5/13/2013 Unit: mg/kg

| Sample ID | Sample<br>Description | Batch QC | Date Analyzed | MDL<br>mg/kg | R.L<br>mg/kg | TRPH<br>mg/kg |
|-----------|-----------------------|----------|---------------|--------------|--------------|---------------|
| LN05578   | KLF-1-10              | 20130520 | 05/20/13      | 18           | 90           | 11749         |
| LN05579   | KLF-1-15              | 20130520 | 05/20/13      | 18           | 90           | 61 J          |
| LN05580   | KLF-1-20              | 20130520 | 05/20/13      | 18           | 90           | 56 J          |
| LN05581   | KLF-1-25              | 20130520 | 05/20/13      | 18           | 90           | 38 J          |
| LN05582   | KLF-1-30              | 20130520 | 05/20/13      | 18           | 90           | 26 J          |
| LN05583   | KLF-1-35              | 20130520 | 05/20/13      | 18           | 90           | 37 J          |
| LN05584   | KLF-1-40              | 20130520 | 05/20/13      | 18           | 90           | ND            |
| LN05585   | KLF-1-45              | 20130520 | 05/20/13      | 18           | 90           | ND            |
| LN05586   | KLF-1-50              | 20130520 | 05/20/13      | 18           | 90           | 31 J          |
| LN05587   | KLF-1-55              | 20130520 | 05/20/13      | 18           | 90           | 26 J          |
| LN05588   | KLF-1-60              | 20130520 | 05/20/13      | 18           | 90           | ND            |
| LN05589   | KLF-1-65              | 20130520 | 05/20/13      | 18           | 90           | ND            |
| LN05590   | KLF-1-70              | 20130520 | 05/20/13      | 18           | 90           | 31 J          |
| LN05591   | KLF-1-75              | 20130520 | 05/20/13      | 18           | 90           | ND            |
| LN05592   | KLF-1-80              | 20130520 | 05/20/13      | 18           | 90           | ND            |
| LN05593   | KLF-1-85              | 20130520 | 05/20/13      | 18           | 90           | ND            |
| LN05594   | KLF-1-90              | 20130520 | 05/20/13      | 18           | 90           | ND            |

|                     |            | Quali  | ty Control l | <u>Data</u>  |                | ·          |         |           |
|---------------------|------------|--------|--------------|--------------|----------------|------------|---------|-----------|
| COC- 13-1161        |            |        |              | <del> </del> |                |            |         |           |
| Initial Calibration | 1:04-22-13 |        |              |              | Corr. Coeffici | ient:0.997 |         |           |
| Analysis Date 05-   | 20-2013    |        |              |              |                |            |         |           |
|                     |            | QC B   | atch         | Result       |                |            |         |           |
| Blank               |            | 20130  | )520         | ND           |                |            |         |           |
| CC                  |            | QC B   | atch         | Result       | Assigned Value | % Rec.     | QC      | Limits    |
| CC-3                |            | 20130  | )520         | 217          | 218            | 100%       | 70%     | 6 - 130%  |
| CC-3                |            | 20130  | 520          | 224          | 218            | 103%       | 70%     | 6 - 130%  |
| LCS                 |            | QC B   | atch         | Result       | Assigned Value | % Rec.     | Accep   | ted Range |
| Q8739               |            | 20130  | )520         | 2369         | 2320           | 102%       | 35      | 7-3650    |
| Matrix Spike        |            | Sample | Spike        | Spike        | Result         | % Rec.     | Result  | % Rec.    |
| Sample ID           | QC Batch   | Conc.  | Conc. 1      | Conc. 2      | Spike 1        | Spike 1    | Spike 2 | Spike 2   |
| LN05588             | 20130520   | ND     | 1386         | 1464         | 1460           | 105%       | 1490    | 102%      |
|                     |            |        |              |              |                |            |         |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L - Reporting Limit (5 x MDL)

Analyst: Reviewed by: A. Ogunnubi R. Gentallan LL (14113 J - above MDL but below RL

% Rec. - percent recovery

LCS - Lab Control Sample

CC - Calibration Check Standard

Matrix: Soil

Page 1 of 1 COC No.: 13-1171

Project:

FIGUEROA PUMPING STATION

Instrument I.D.:

Foxboro Miran 1FF

Collection Date: 5/14/2013

Unit: mg/kg

| Sample ID | Sample<br>Description | Batch QC | Date Analyzed | MDL<br>mg/kg | R.L<br>mg/kg | TRPH<br>mg/kg |
|-----------|-----------------------|----------|---------------|--------------|--------------|---------------|
| LN05648   | KLF-2-10              | 20130521 | 05/21/13      | 18           | 90           | 13093         |
| LN05649   | KLF-2-15              | 20130521 | 05/21/13      | 18           | 90           | 1592          |
| LN05650   | KLF-2-20              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05651   | KLF-2-25              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05652   | KLF-2-30              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05653   | KLF-2-35              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05654   | KLF-2-40              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05655   | KLF-2-45              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05656   | KLF-2-50              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05657   | KLF-2-55              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05658   | KLF-2-60              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05659   | KLF-2-65              | 20130521 | 05/21/13      | 18           | 90           | ND            |
|           |                       |          |               |              |              |               |

|                    |            | <u>Quali</u> | ty Control | <u>Data</u> |                |            |            |           |
|--------------------|------------|--------------|------------|-------------|----------------|------------|------------|-----------|
| COC- 13-1171       |            |              |            |             |                |            |            |           |
| Initial Calibratio | n:04-22-13 |              |            |             | Corr. Coeffici | ient:0.997 |            |           |
| Analysis Date 05-  | 21-2013    |              |            |             |                |            |            |           |
|                    |            | QC B         | atch       | Result      |                |            |            |           |
| Blank              |            | 20130        | 521        | ND          |                |            | •          |           |
| <u>CC</u>          |            | QC B         | atch       | Result      | Assigned Value | % Rec.     | QC         | Limits    |
| CC-3               |            | 20130        | 521        | 114         | 112            | 102%       | 70% - 130% |           |
| CC-3               |            | 20130        | 521        | 113         | 112            | 101%       | 70%        | 5 - 130%  |
| LCS                |            | QC B         | atch       | Result      | Assigned Value | % Rec.     | Accep      | ted Range |
| Q8739              |            | 20130        | 521        | 1844        | 2320           | 79%        | 35         | 7-3650    |
| Matrix Spike       |            | Sample       | Spike      | Spike       | Result         | % Rec.     | Result     | % Rec.    |
| Sample ID          | QC Batch   | Conc.        | Conc. 1    | Conc. 2     | Spike 1        | Spike 1    | Spike 2    | Spike 2   |
| LN05658            | 20130521   | ND           | 1512       | 1602        | 1500           | 99%        | 1530       | 96%       |
|                    |            |              |            |             |                |            |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L - Reporting Limit (5 x MDL)

J - above MDL but below RL

% Rec. - percent recovery

LCS - Lab Control Sample

CC - Calibration Check Standard

Analyst: Reviewed by: A. Ogunnubi R. Gentallan El 6/4/13

Matrix: Soil

Page 1 of 1 COC No.: 13-1192

Project:

FIGUEROA PUMPING STATION

Instrument I.D.:

Foxboro Miran 1FF

Collection Date: 5/15/2013

Unit: mg/kg

| Sample ID | Sample<br>Description | Batch QC | Date Analyzed | MDL<br>mg/kg | R.L<br>mg/kg | TRPH<br>mg/kg |
|-----------|-----------------------|----------|---------------|--------------|--------------|---------------|
| LN05740   | KLF-3-10              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05741   | KLF-3-15              | 20130521 | 05/21/13      | 18           | 90           | 51 J          |
| LN05742   | KLF-3-20              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05743   | KLF-3-25              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05744   | KLF-3-30              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05745   | KLF-3-35              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05746   | KLF-3-40              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05747   | KLF-3-45              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05748   | KLF-3-50              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05749   | KLF-3-55              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05750   | KLF-3-60              | 20130521 | 05/21/13      | 18           | 90           | ND            |
| LN05751   | KLF-3-65              | 20130521 | 05/21/13      | 18           | 90           | ND            |
|           |                       |          |               |              |              |               |

|                     |            | Quali    | ity Control | <u>Data</u> |                |            |         |           |
|---------------------|------------|----------|-------------|-------------|----------------|------------|---------|-----------|
| COC- 13-1192        |            |          |             |             |                |            |         |           |
| Initial Calibration | n:04-22-13 |          |             |             | Corr. Coeffici | ient:0.997 |         |           |
| Analysis Date 05-2  | 21-2013    |          |             |             |                |            |         |           |
|                     |            | QC B     | atch        | Result      |                |            |         |           |
| Blank               |            | 20130    | 0521        | ND          |                |            |         |           |
| <u>CC</u>           |            | QC B     | atch        | Result      | Assigned Value | % Rec.     | QC      | Limits    |
| CC-3                |            | 20130    | 0521        | 114         | 112            | 102%       | 70%     | - 130%    |
| CC-3                |            | 20130    | 0521        | 113         | 112            | 101%       | 70%     | - 130%    |
| <u>LCS</u>          |            | QC B     | atch        | Result      | Assigned Value | % Rec.     | Accept  | ted Range |
| Q8739               |            | 20130    | 0521        | 1844        | 2320           | 79%        | 35      | 7-3650    |
| Matrix Spike        |            | Sample   | Spike       | Spike       | Result         | % Rec.     | Result  | % Rec.    |
| Sample ID           | QC Batch   | Conc.    | Conc. 1     | Conc. 2     | Spike 1        | Spike 1    | Spike 2 | Spike 2   |
| LN05748             | 20130521   | ND       | 1454        | 1350        | 1563           | 107%       | 1564    | 116%      |
|                     |            | <u> </u> |             | <u> </u>    |                |            |         |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Reporting Limit (5 x MDL)

J - above MDL but below RL

% Rec. - percent recovery

LCS - Lab Control Sample

CC - Calibration Check Standard

Analyst: Reviewed by: A. Ogunnubi R. Gentallan 125 6/4/13

040004

Matrix: Soil

Page 1 of 1 COC No.: 13-1202

Project:

FIGUEROA PUMPING STATION

Instrument I.D.:

Foxboro Miran 1FF

Collection Date: 5/16/2013

Unit:

mg/kg

|           | Sample      |          |               | MDL   | R.L   | TRPH  |
|-----------|-------------|----------|---------------|-------|-------|-------|
| Sample ID | Description | Batch QC | Date Analyzed | mg/kg | mg/kg | mg/kg |
| LN05796   | KLF-5-5     | 20130521 | 05/21/13      | 18    | 90    | 273   |
| LN05797   | KLF-5-10    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05798   | KLF-5-15    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05799   | KLF-5-20    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05800   | KLF-5-25    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05801   | KLF-5-30    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05802   | KLF-5-35    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05803   | KLF-5-40    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05804   | KLF-5-45    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05805   | KLF-5-50    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05806   | KLF-5-55    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05807   | KLF-5-60    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05808   | KLF-5-65    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05809   | KLF-5-70    | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05810   | KLF-4-5     | 20130521 | 05/21/13      | 18    | 90    | ND    |
| LN05811   | KLF-4-10    | 20130521 | 05/21/13      | 18    | 90    | ND    |
|           |             |          |               | 1     |       |       |

|                     |            | <u>Quali</u> | ty Control l | <u>Data</u> |                |            |         |           |
|---------------------|------------|--------------|--------------|-------------|----------------|------------|---------|-----------|
| COC- 13-1202        |            |              |              |             |                |            |         |           |
| Initial Calibration | 1:04-22-13 |              |              |             | Corr. Coeffici | ient:0.997 |         |           |
| Analysis Date 05-   | 21-2013    |              |              |             |                |            |         |           |
|                     |            | QC B         | atch         | Result      |                |            |         |           |
| Blank               |            | 20130        | 521          | ND          |                | •          |         |           |
| <u>cc</u>           |            | QC B         | atch         | Result      | Assigned Value | % Rec.     | QC      | C Limits  |
| CC-3                |            | 20130        | 521          | 114         | 112            | 102%       | 70%     | 6 - 130%  |
| CC-3                |            | 20130        | 521          | 113         | 112            | 101%       | 70%     | 6 - 130%  |
| LCS                 |            | QC B         | atch         | Result      | Assigned Value | % Rec.     | Accep   | ted Range |
| Q8739               |            | 20130        | 521          | 1844        | 2320           | 79%        | 35      | 7-3650    |
| Matrix Spike        |            | Sample       | Spike        | Spike       | Result         | % Rec.     | Result  | % Rec.    |
| Sample ID           | QC Batch   | Conc.        | Conc. 1      | Conc. 2     | Spike 1        | Spike 1    | Spike 2 | Spike 2   |
| LN05658             | 20130521   | ND           | 1512         | 1602        | 1500           | 99%        | 1530    | 96%       |

ND - Not Detected; below method detection limit

J - above MDL but below RL

LCS - Lab Control Sample CC - Calibration Check Standard

MDL - Method Detection Limit

% Rec. - percent recovery

R.L - Reporting Limit (5 x MDL)

Analyst: Reviewed by: A. Ogunnubi R. Gentallan Physiology

Matrix: Soil

Page 1 of 1 COC No.: 13-1202

Project:

FIGUEROA PUMPING STATION

Instrument I.D.:

Foxboro Miran 1FF

Collection Date: 5/16/2013

Unit:

mg/kg

| Sample ID | Sample Description | Batch QC | Date Analyzed | MDL<br>mg/kg | R.L<br>mg/kg | TRPH<br>mg/kg |
|-----------|--------------------|----------|---------------|--------------|--------------|---------------|
| LN05812   | KLF-4-15           | 20130529 | 05/29/13      | 18           | 90           | ND            |
| LN05813   | KLF-4-20           | 20130529 | 05/29/13      | 18           | 90           | ND            |
| LN05814   | KLF-4-25           | 20130529 | 05/29/13      | 18           | 90           | 29 J          |
| LN05815   | KLF-4-30           | 20130529 | 05/29/13      | 18           | 90           | 22 J          |
| LN05816   | KLF-4-35           | 20130529 | 05/29/13      | 18           | 90           | 27 J          |
| LN05817   | KLF-4-40           | 20130529 | 05/29/13      | 18           | 90           | 27 J          |
| LN05818   | KLF-4-45           | 20130529 | 05/29/13      | 18           | 90           | ND            |
| LN05819   | KLF-4-50           | 20130529 | 05/29/13      | 18           | 90           | 29 J          |
| LN05820   | KLF-4-55           | 20130529 | 05/29/13      | 18           | 90           | ND            |
| LN05821   | KLF-4-60           | 20130529 | 05/29/13      | 18           | 90           | ND            |
| LN05822   | KLF-4-65           | 20130529 | 05/29/13      | 18           | 90           | 29 J          |
| LN05823   | KLF-4-70           | 20130529 | 05/29/13      | 18           | 90           | 28 J          |
|           |                    |          |               |              |              |               |

|                    |            | Quali  | ity Control | <u>Data</u> |                |            |            |           |
|--------------------|------------|--------|-------------|-------------|----------------|------------|------------|-----------|
| COC- 13-1202       |            |        |             |             |                |            |            |           |
| Initial Calibratio | n:05-28-13 |        |             |             | Corr. Coeffic  | ient:0.999 |            |           |
| Analysis Date 05-  | 29-2013    |        |             |             |                |            |            |           |
|                    |            | QC B   | atch        | Result      |                |            |            |           |
| Blank              |            | 20130  | )529        | ND          |                |            |            |           |
| <u>CC</u>          |            | QC B   | atch        | Result      | Assigned Value | % Rec.     | QC         | Limits    |
| CC-3               |            | 20130  | )529        | 80          | 82             | 98%        | 70% - 130% |           |
| CC-3               |            | 20130  | )529        | 78          | 82             | 95%        | 70%        | 6 - 130%  |
| LCS                |            | QC B   | atch        | Result      | Assigned Value | % Rec.     | Accep      | ted Range |
| Q8739              |            | 20130  | )529        | 3226        | 2320           | 139%       | 35         | 7-3650    |
| Matrix Spike       |            | Sample | Spike       | Spike       | Result         | % Rec.     | Result     | % Rec.    |
| Sample ID          | QC Batch   | Conc.  | Conc, 1     | Conc. 2     | Spike 1        | Spike 1    | Spike 2    | Spike 2   |
| LN05812            | 20130529   | ND     | 1507        | 1445        | 1430           | 94%        | 1460       | 100%      |
|                    |            |        |             |             |                |            |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit R.L - Reporting Limit (5 x MDL) J - above MDL but below RL

% Rec. - percent recovery

LCS - Lab Control Sample

CC - Calibration Check Standard

Analyst: Reviewed by: A. Ogunnubi R. Gentallan Oglo (4/13

Matrix: Soil

Page 1 of 1 COC No.: 13-1232

Project:

FIGUEROA PUMPING STATION

Instrument I.D.:

Foxboro Miran 1FF

Collection Date: 5/20/2013

Unit:

mg/kg

| Sample ID | Sample Description | Batch QC | Date Analyzed | MDL<br>mg/kg | R.L<br>mg/kg | TRPH<br>mg/kg |
|-----------|--------------------|----------|---------------|--------------|--------------|---------------|
| LN05904   | KLF-7-5            | 20130529 | 05/29/13      | 18           | 90           | 86 J          |
| LN05905   | KLF-7-10           | 20130522 | 05/29/13      | 18           | 90           | ND            |
| LN05906   | KLF-7-15           | 20130522 | 05/29/13      | 18           | 90           | ND            |
| LN05907   | KLF-7-20           | 20130522 | 05/29/13      | 18           | 90           | ND            |
| LN05908   | KLF-7-25           | 20130522 | 05/29/13      | 18           | 90           | ND            |
| LN05909   | KLF-7-30           | 20130522 | 05/29/13      | 18           | 90           | 29 J          |

|                     |              | <u>Quali</u> | ity Control 1 | <u>Data</u> |                |            |         |         |
|---------------------|--------------|--------------|---------------|-------------|----------------|------------|---------|---------|
| COC- 13-1232        |              |              |               |             |                |            |         |         |
| Initial Calibration | 1:05-29-2013 |              |               |             | Corr. Coeffic  | ient:0.999 |         |         |
| Analysis Date 05-2  | 29-2013      |              |               |             |                |            |         |         |
|                     |              | QC B         | atch          | Result      |                |            |         |         |
| Blank               |              | 20130        | )529          | ND          |                |            |         |         |
| <u>CC</u>           |              | QC B         | atch          | Result      | Assigned Value | % Rec.     | QC I    | Limits  |
| CC-3                |              | 20130        | )529          | 80          | 82             | 98%        | 70% -   | 130%    |
| CC-3                |              | 20130        | )529          | 78          | 80             | 94%        | 70% -   | 130%    |
| LCS                 |              | QC B         | atch          | Result      | Assigned Value | % Rec.     | Accepte | d Range |
| Q8739               |              | 20130        | )529          | 3226        | 2320           | 139%       | 357-    | 3650    |
| Matrix Spike        |              | Sample       | Spike         | Spike       | Result         | % Rec.     | Result  | % Rec.  |
| Sample ID           | QC Batch     | Conc.        | Conc. 1       | Conc. 2     | Spike 1        | Spike 1    | Spike 2 | Spike 2 |
| LN05822             | 20130529     | 29 J         | 1427          | 1423        | 1466           | 100%       | 1435    | 99%     |
|                     |              |              |               |             |                |            |         |         |

ND - Not Detected; below method detection limit

J - above MDL but below RL

LCS - Lab Control Sample

MDL - Method Detection Limit R.L - Reporting Limit (5 x MDL)

% Rec. - percent recovery

CC - Calibration Check Standard

Analyst:

A. Ogunnubi

Reviewed by:

Matrix: Soil

Page 1 of 1 COC No.: 13-1232

Project:

FIGUEROA PUMPING STATION

Instrument I.D.:

Foxboro Miran 1FF

Collection Date: 5/20/2013

mg/kg Unit:

| Sample ID | Description | Batch QC | Date Analyzed | mg/kg | mg/kg | mg/kg |
|-----------|-------------|----------|---------------|-------|-------|-------|
| LN05910   | KLF-7-35    | 20130530 | 05/30/13      | 18    | 90    | 28 J  |
| LN05911   | KLF-7-40    | 20130530 | 05/30/13      | 18    | 90    | 28 J  |
| LN05912   | KLF-7-45    | 20130530 | 05/30/13      | 18    | 90    | 21 J  |
| LN05913   | KLF-7-50    | 20130530 | 05/30/13      | 18    | 90    | ND    |
| LN05914   | KLF-7-55    | 20130530 | 05/30/13      | 18    | 90    | ND    |
| LN05915   | KLF-7-60    | 20130530 | 05/30/13      | 18    | 90    | ND    |
| LN05916   | KLF-7-65    | 20130530 | 05/30/13      | 18    | 90    | ND    |
| LN05917   | KLF-7-70    | 20130530 | 05/30/13      | 18    | 90    | 29 J  |

| Quality Control Data                                 |          |                                       |         |                |                |              |            |         |  |
|------------------------------------------------------|----------|---------------------------------------|---------|----------------|----------------|--------------|------------|---------|--|
| COC- 13-1232                                         |          |                                       |         |                |                | <u></u>      |            |         |  |
| Initial Calibration:05-28-13 Corr. Coefficient:0.999 |          |                                       |         |                |                |              |            |         |  |
| Analysis Date 05-                                    | 30-2013  |                                       |         |                |                |              |            |         |  |
|                                                      |          | QC B                                  | atch    | Result         |                |              |            |         |  |
| Blank                                                |          | 20130530                              |         | ND             |                |              |            |         |  |
| CC                                                   |          | QC Batch                              |         | Result         | Assigned Value | % Rec.       | QC Limits  |         |  |
| CC-3                                                 |          | 20130530                              |         | 78             | 82             | 95%          | 70% - 130% |         |  |
| CC-3                                                 |          | 20130530                              |         | 78             | 82             | 95%          | 70% - 130% |         |  |
| LCS                                                  |          | QC Batch Result Assigned Value % Rec. |         | Accepted Range |                |              |            |         |  |
| Q8739                                                |          | 20130530                              |         | 2643           | 2320           | 114% 357-365 |            | -3650   |  |
| Matrix Spike                                         |          | Sample                                | Spike   | Spike          | Result         | % Rec.       | Result     | % Rec.  |  |
| Sample ID                                            | QC Batch | Conc.                                 | Conc. 1 | Conc. 2        | 2 Spike 1      | Spike 1      | Spike 2    | Spike 2 |  |
| LN05910                                              | 20130530 | 28 J                                  | 1390    | 1377           | 1330           | 94%          | 1370       | 97%     |  |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Reporting Limit (5 x MDL)

J - above MDL but below RL

% Rec. - percent recovery

LCS - Lab Control Sample

CC - Calibration Check Standard

Analyst:

A. Ogunnubi

Reviewed by:

Matrix: Soil

Page 1 of 1 COC No.: 13-1233

Project: FIGUEROA PUMPING STATION

Instrument I.D.:

Foxboro Miran 1FF

Collection Date: 5/20/2013

Unit:

mg/kg

|           | Sample      |          |               | MDL   | R.L          | TRPH  |
|-----------|-------------|----------|---------------|-------|--------------|-------|
| Sample ID | Description | Batch QC | Date Analyzed | mg/kg | mg/kg        | mg/kg |
| LN05918   | KLF-6-5     | 20130530 | 05/30/13      | 18    | 90           | 7198  |
| LN05919   | KLF-6-10    | 20130530 | 05/30/13      | 18    | 90           | 28 J  |
| LN05920   | KLF-6-15    | 20130530 | 05/30/13      | 18    | 90           | 29 J  |
| LN05921   | KLF-6-20    | 20130530 | 05/30/13      | 18    | 90           | ND    |
| LN05922   | KLF-6-25    | 20130530 | 05/30/13      | 18    | 90           | 36 J  |
| LN05923   | KLF-6-30    | 20130530 | 05/30/13      | 18    | 90           | 37 J  |
| LN05924   | KLF-6-35    | 20130530 | 05/30/13      | 18    | 90           | 21 J  |
| LN05925   | KLF-6-40    | 20130530 | 05/30/13      | 18    | 90           | ND    |
| LN05926   | KLF-6-45    | 20130530 | 05/30/13      | 18    | 90           | 28 J  |
| LN05927   | KLF-6-50    | 20130530 | 05/30/13      | 18    | 90           | 43 J  |
| LN05928   | KLF-6-55    | 20130530 | 05/30/13      | 18    | 90           | 28 J  |
| LN05929   | KLF-6-60    | 20130530 | 05/30/13      | 18    | 90           | 29 J  |
| LN05930   | KLF-6-65    | 20130530 | 05/30/13      | 18    | 90           | 22 J  |
| LN05931   | KLF-6-70    | 20130530 | 05/30/13      | 18    | 90           | 29 J  |
|           |             |          |               |       | . <u>.</u> . |       |

| Quality Control Data |           |        |                          |                       |         |         |                |         |  |  |  |  |  |
|----------------------|-----------|--------|--------------------------|-----------------------|---------|---------|----------------|---------|--|--|--|--|--|
| COC- 13-1233         |           |        |                          |                       |         |         |                |         |  |  |  |  |  |
| Initial Calibration  | :05-28-13 |        | Corr. Coefficient: 0.999 |                       |         |         |                |         |  |  |  |  |  |
| Analysis Date 05-3   | 30-2013   |        |                          |                       |         |         |                |         |  |  |  |  |  |
|                      |           | QC B   | atch                     | Result                | ·       |         |                |         |  |  |  |  |  |
| Blank                |           |        | 20130530                 |                       |         |         |                |         |  |  |  |  |  |
| <u>cc</u>            |           | QC B   | atch                     | Result Assigned Value |         | % Rec.  | QC Limits      |         |  |  |  |  |  |
| CC-3                 |           | 20130  | 130530 78                |                       | 82      | 95%     | 70% - 130%     |         |  |  |  |  |  |
| CC-3                 |           | 20130  | )530                     | 78 82                 |         | 95%     | 70% - 130%     |         |  |  |  |  |  |
| LCS                  |           | QC B   | atch                     | Result Assigned Value |         | % Rec.  | Accepted Range |         |  |  |  |  |  |
| Q8739                |           | 20130  | )530                     | 2643 2320             |         | 114%    | 357-3          | 3650    |  |  |  |  |  |
| Matrix Spike         |           | Sample | Spike                    | Spike                 | Result  | % Rec.  | Result         | % Rec.  |  |  |  |  |  |
| Sample ID            | QC Batch  | Conc.  | Conc. I                  | Conc. 2               | Spike 1 | Spike 1 | Spike 2        | Spike 2 |  |  |  |  |  |
| LN05930              | 20130530  | 22     | 1432                     | 1416                  | 1420    | 98%     | 1410           | 98%     |  |  |  |  |  |
|                      |           |        |                          |                       |         | 1       |                | 1       |  |  |  |  |  |

ND - Not Detected; below method detection limit

J - above MDL but below RL

LCS - Lab Control Sample

MDL - Method Detection Limit

% Rec. - percent recovery

CC - Calibration Check Standard

R.L - Reporting Limit (5 x MDL)

Analyst:

A. Ogunnubi

Reviewed by:

R. Gentallan RLL 6/4/13

# Department of Water & Power Environmental Laboratory Data Report on Oil & Grease USEPA Method 1664B Matrix: Water

Page 1 of 1

COC No.:13-1161, 13-1171,

Project Name: FIGUEROA PUMPING STATION 13-1192, 13-1202, 13-1231

Date Sampled 5/13/13 TO 5/20/2013

Unit: mg/L

| Date Sumpled                           | 3/13/13 10 3/20/20 | Omi. mgr  |           |           |         |         |              |         |  |  |  |
|----------------------------------------|--------------------|-----------|-----------|-----------|---------|---------|--------------|---------|--|--|--|
|                                        | Sample             |           | Sample    |           | MDL     | RL      | Oil & Grease |         |  |  |  |
| Sample ID                              | Description        | D         | ate       | Date      | mg/L    | mg/L    | mg/L         |         |  |  |  |
| LN05577                                | QCEB               | 5/13/2013 |           | 5/24/2013 | 0.5     | 2.5     | 2.5          |         |  |  |  |
| LN05646                                | QCEB               | 5/14/2013 |           | 5/24/2013 | 0.5     | 2.5     | N            | D       |  |  |  |
| LN05660                                | QCFB               | 5/14/2013 |           | 5/29/2013 | 0.5     | 2.5     | N            | D       |  |  |  |
| LN05739                                | QCEB               | 5/15      | 5/15/2013 |           | 0.5     | 2.5     | N            | D       |  |  |  |
| LN05752                                | QCFB               | 5/15      | /2013     | 5/29/2013 | 0.5     | 2.5     | ND           |         |  |  |  |
| LN05824                                | QCFB               | 5/16      | /2013     | 5/29/2013 | 0.5     | 2.5     | ND           |         |  |  |  |
| LN05825                                | QCEB               | 5/16      | 5/16/2013 |           | 0.5     | 2.5     | ND           |         |  |  |  |
| LN05901                                | QCEB               | 5/20/2013 |           | 5/29/2013 | 0.5     | 2.5     | ND           |         |  |  |  |
| LN05902                                | QCFB               | 5/20/2013 |           | 5/29/2013 | 0.5     | 2.5     | N            | D       |  |  |  |
| Quality Control Data                   |                    |           |           |           |         |         |              |         |  |  |  |
|                                        | Analysis Date      | Result    |           |           |         |         |              |         |  |  |  |
| Blank                                  | 5/24/2013          | <0.5      |           |           |         |         |              |         |  |  |  |
|                                        | 5/29/2013 <0.5     |           |           |           |         |         |              |         |  |  |  |
|                                        |                    |           |           |           |         |         |              |         |  |  |  |
| :                                      |                    | Spike     | Spike     | Blank     |         | Blank   |              |         |  |  |  |
| ······································ |                    | Conc. 1   | Conc. 2   | Spike 1   | % Rec.  | Spike 2 | % Rec.       | QC      |  |  |  |
| Blank Spike                            | Analysis Date      | ug/L      | ug/L      | ug/L      | Spike 1 | ug/L    | Spike 2      | Limits  |  |  |  |
|                                        | 5/24/2013          | 24        | 24        | 22.3      | 93%     | 21.7    | 90%_         | 83-101% |  |  |  |
|                                        | 5/29/2013          | 24        | 24        | 24.0      | 100%    | 23.8    | 99%          | 83-101% |  |  |  |

ND - Not Detected; below method detection limit

J - above MDL and below RL

% Rec. - percent recovery

MDL - Method Detection Limit

R.L - Reporting Limit (5 x MDL)

Analyst: N. Perez

Reviewed by: 1/25/13

# ATTACHMENT # 4

## Gasoline Range Organics (GRO) EPA Method 8015B Soil & Water

## CITY OF LOS ANGELES, DEPARTMENT OF WATER & POWER ENVIRONMENTAL LABORATORY

#### CASE NARRATIVE

PROJECT: FIGUEROA PUMPING STATION

### METHOD 8015B GRO (GASOLINE RANGE ORGANICS)

1. Holding Time

Analytical holding time was met.

2. Method Blank

There was no contamination detected at reporting level.

3. Lab Control Sample

Recoveries were within QC limits

4. Surrogate Recovery

Recoveries were within QC limits

5. Matrix Spike/Matrix Spike Duplicate

Samples LN05588, LN05659, LN05749, LN05823, LN05922, and LN05577 were analyzed for MS/MSD. Recoveries were within QC limits.

6. Calibration

Initial calibration was performed at five different concentrations. The percent relative standard deviation (% RSD) was within 15%. Continuing calibration check standards were within QC limits.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. There was no contamination from gasoline range organics at reporting level.

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE      | DATE     |              |              |         | INSTR.   |           |         |
|-----------------|-------------|------------|-----------|----------|--------------|--------------|---------|----------|-----------|---------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMP         | LE DESCRIP   | TION    | ID       | RUN LOG/I | ватсн   |
| LN05578         | 05/13/13    | 05/13/13   | 05/14/13  | 05/22/13 | ]            | KLF - 1 - 10 |         | AG gas   | 2013      | 0521    |
| LN05579         | 05/13/13    | 05/13/13   | 05/14/13  | 05/22/13 | ]            | KLF - 1 - 15 |         | AG gas   | 2013      | 0521    |
| LN05580         | 05/13/13    | 05/13/13   | 05/14/13  | 05/22/13 | ]            | KLF - 1 - 20 |         | AG gas   | 2013      | 0521    |
| LN05581         | 05/13/13    | 05/13/13   | 05/14/13  | 05/22/13 | ]            | KLF - 1 - 25 |         | AG gas   | 20130521  |         |
| LN05582         | 05/13/13    | 05/13/13   | 05/14/13  | 05/22/13 | KLF - 1 - 30 |              | AG gas  | 20130521 |           |         |
| LN05583         | 05/13/13    | 05/13/13   | 05/14/13  | 05/22/13 | ,            | KLF - 1 - 35 |         | AG gas   | 2013      | 0521    |
| LN05584         | 05/13/13    | 05/13/13   | 05/14/13  | 05/22/13 | ,            | KLF - 1 - 40 |         | AG gas   | 2013      | 0521    |
|                 |             |            |           |          |              |              |         |          |           |         |
|                 |             | MDL/PQL    | MB        | LN05578  | LN05579      | LN05580      | LN05581 | LN05582  | LN05583   | LN05584 |
|                 |             | mg/kg      | mg/kg     | mg/kg    | mg/kg        | mg/kg        | mg/kg   | mg/kg    | mg/kg     | mg/kg   |
| Dilution Factor |             | 1          | 1         | 20 **    | 20**         | 1            | 1       | 1        | 1         | 11      |
| Gasoline (GRO   | )           | 1.1 / 5.5  | ND        | ND       | ND           | ND           | ND      | ND       | ND        | ND      |
| Quality Co      | ontrol Data |            |           |          |              |              |         |          |           |         |
| Surrogate/Inter | nal Std.    | % ACP      | % RC      | %RC      | %RC          | %RC          | %RC     | %RC      | %RC       | %RC_    |
| 1, 2 Dichlorobe | enzene-d4   | (70 - 130) | 104%      | 122%     | 104%         | 103%         | 106%    | 105%     | 107%      | 106%    |
|                 |             |            |           |          |              |              | ,       |          |           |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*\*</sup> Sample was analyzed at higher dilution; Sample extract was either highly colored or exhibiting high turbidity

MDL / PQL for samples analyzed at higher dilutions computed as MDL/PQL (dilution x1) multiplied by the dilution factor

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMI         | PLE DESCRIE  | TION    | INSTR.<br>ID | RUN LOG/ | ВАТСН   |
|-------------------|-----------------|------------------|-------------------|------------------|--------------|--------------|---------|--------------|----------|---------|
| LN05585           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |              | KLF - 1 - 45 | i       | AG gas       | 2013     | 30521   |
| LN05586           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |              | KLF - 1 - 50 | )       | AG gas       | 2013     | 30521   |
| LN05587           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         | KLF - 1 - 55 |              |         | AG gas       | 2013     | 30521   |
| LN05588           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |              | KLF - 1 - 60 | )       | AG gas       | 20130521 |         |
| LN05589           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |              | KLF - 1 - 65 | i       | AG gas       | 2013     | 30521   |
| LN05590           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |              | KLF - 1 - 70 | )       | AG gas       | 2013     | 30521   |
| LN05591           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |              | KLF - 1 - 75 | i       | AG gas       | 2013     | 0521    |
|                   |                 |                  |                   |                  |              |              |         |              |          |         |
|                   |                 | MDL / PQL        | MB                | LN05585          | LN05586      | LN05587      | LN05588 | LN05589      | LN05590  | LN05591 |
|                   |                 | mg/kg            | mg/kg             | mg/kg            | mg/kg        | mg/kg        | mg/kg   | mg/kg        | mg/kg    | mg/kg   |
| Dilution Facto    | r               | 1                | 1                 | 1                | 1            | 1            | 1       | 1            | 1        | 11      |
| Gasoline (GRO     | D)              | 1.1 / 5.5        | ND                | ND               | ND           | ND           | ND      | ND           | ND       | ND      |
| Quality C         | ontrol Data     |                  |                   |                  |              |              |         |              |          |         |
| Surrogate/Inter   | rnal Std.       | % ACP            | % RC              | %RC              | %RC          | %RC          | %RC     | %RC          | %RC      | %RC     |
| 1, 2 Dichlorob    | enzene-d4       | (70 - 130)       | 104%              | 105%             | 107%         | 107%         | 106%    | 107%         | 104%     | 103%    |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAM     | PLE DESCRIPTION | INSTR.   | RUN LOG/BATCH |
|-------------------|-----------------|------------------|-------------------|------------------|---------|-----------------|----------|---------------|
| LN05592           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |         | KLF - 1 - 80    | AG gas   | 20130521      |
| LN05593           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |         | KLF - 1 - 85    | AG gas   | 20130521      |
| LN05594           | 05/13/13        | 05/13/13         | 05/14/13          | 05/22/13         |         | KLF - 1 - 90    | AG gas   | 20130521      |
|                   |                 | :                |                   |                  |         |                 | :        |               |
|                   |                 | !                |                   |                  |         |                 |          |               |
|                   |                 | MDL / PQL        | МВ                | LN05592          | LN05593 | LN05594         |          | :             |
|                   |                 | mg/kg            | mg/kg             | mg/kg            | mg/kg   | mg/kg           |          |               |
| Dilution Factor   | Γ               | 1                | 1                 | 1                | 1       | 1               |          |               |
| Gasoline (GRC     | ))              | 1.1 / 5.5        | ND                | ND               | ND      | ND .            |          |               |
| Quality C         | ontrol Data     |                  |                   |                  |         |                 |          |               |
| Surrogate/Inter   | nal Std.        | % ACP            | % RC              | %RC              | %RC     | %RC             |          |               |
| 1, 2 Dichlorobe   | enzene-d4       | (70 - 130)       | 104%              | 109%             | 117%    | 106%            |          |               |
|                   | ·               |                  |                   |                  |         |                 | <u> </u> |               |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| SAMPLE  | BATCH    | SAMPLE | SPIKE |      |       |      |       |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|-------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS  | MSD  | % MSD | RPD  | % ACP  | ACP |
| LN05588 | 20130521 | ND     | 22.0  | 18.3 | 83.2% | 18.9 | 85.9% | 3.2% | 70-130 | 30  |
|         |          |        |       |      |       |      |       |      |        |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130521 | 5/22/2013     | 22.0        | 27.5   | 125.0  | 70 - 130         |
|          |          |               |             |        |        |                  |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE      | DATE     | r       |            |         | INSTR.  |          |         |
|-----------------|-------------|------------|-----------|----------|---------|------------|---------|---------|----------|---------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMP    | LE DESCRIP | TION    | ID      | RUN LOG/ | ВАТСН   |
| LN05648         | 05/14/13    | 05/14/13   | 05/15/13  | 05/22/13 |         | KLF-2-10   |         | AG gas  | 2013     | 30521   |
| LN05649         | 05/14/13    | 05/14/13   | 05/15/13  | 05/22/13 |         | KLF-2-15   |         | AG gas  | 2013     | 30521   |
| LN05650         | 05/14/13    | 05/14/13   | 05/15/13  | 05/22/13 | ·       | KLF-2-20   |         | AG gas  | 2013     | 30521   |
| LN05651         | 05/14/13    | 05/14/13   | 05/15/13  | 05/22/13 |         | KLF-2-25   |         | AG gas  | 2013     | 30521   |
| LN05652         | 05/14/13    | 05/14/13   | 05/15/13  | 05/22/13 |         | KLF-2-30   |         | AG gas  | 2013     | 30521   |
| LN05653         | 05/14/13    | 05/14/13   | 05/15/13  | 05/22/13 |         | KLF-2-35   |         | AG gas  | 2013     | 30521   |
| LN05654         | 05/14/13    | 05/14/13   | 05/15/13  | 05/22/13 |         | KLF-2-40   | ·       | AG gas  | 2013     | 30521   |
|                 |             |            |           |          |         |            |         |         |          |         |
|                 |             | MDL/PQL    | MB        | LN05648  | LN05649 | LN05650    | LN05651 | LN05652 | LN05653  | LN05654 |
|                 |             | mg/kg      | mg/kg     | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   | mg/kg    | mg/kg   |
| Dilution Factor | r           | 1          | 1         | 20**     | 1       | 11         | 1       | 1       | 1        | 1       |
| Gasoline (GRO   | D)          | 1.1 / 5.5  | ND        | ND       | ND      | ND         | ND      | ND      | ND       | ND      |
| Quality C       | ontrol Data |            |           |          |         |            |         |         |          |         |
| Surrogate/Inter | mal Std.    | % ACP      | % RC      | %RC      | %RC     | %RC        | %RC     | %RC     | %RC      | %RC     |
| 1, 2 Dichlorob  | enzene-d4   | (70 - 130) | 104%      | 127%     | 102%    | 105%       | 104%    | 105%    | 104%     | 97.3%   |
|                 |             |            |           |          |         |            |         | !       | <u> </u> |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*\*</sup> Sample was analyzed at higher dilution; Sample extract was either highly colored or exhibiting high turbidity

MDL / PQL for samples analyzed at higher dilutions computed as MDL/PQL (dilution x1) multiplied by the dilution factor

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMI             | LE DESCRIE       | TION             | INSTR.<br>ID     | RUN LOG/BATCI | H |
|-------------------|-----------------|--------------------|-------------------|------------------|------------------|------------------|------------------|------------------|---------------|---|
| LN05655           | 05/14/13        | 05/14/13           | 05/15/13          | 05/22/13         |                  | KLF-2-45         |                  | AG gas           | 20130521      |   |
| LN05656           | 05/14/13        | 05/14/13           | 05/15/13          | 05/22/13         |                  | KLF-2-50         |                  | AG gas           | 20130521      |   |
| LN05657           | 05/14/13        | 05/14/13           | 05/15/13          | 05/22/13         |                  | KLF-2-55         |                  | AG gas           | 20130521      |   |
| LN05658           | 05/14/13        | 05/14/13           | 05/15/13          | 05/22/13         |                  | KLF-2-60         |                  | AG gas           | 20130521      |   |
| LN05659           | 05/14/13        | 05/14/13           | 05/15/13          | 05/22/13         |                  | KLF-2-65         |                  | AG gas           | 20130521      |   |
|                   |                 | MDL / PQL<br>mg/kg | MB<br>mg/kg       | LN05655<br>mg/kg | LN05656<br>mg/kg | LN05657<br>mg/kg | LN05658<br>mg/kg | LN05659<br>mg/kg |               |   |
| Dilution Factor   | r               | 1                  | 1                 | 1                | 1                | 1                | 1                | 1                |               |   |
| Gasoline (GRC     | ))              | 1.1 / 5.5          | ND                | ND ND            | ND               | ND               | ND               | ND               |               |   |
| Quality C         | ontrol Data     |                    |                   |                  | :                | ·                |                  |                  |               |   |
| Surrogate/Inter   | nal Std.        | % ACP              | % RC              | %RC              | %RC              | %RC              | %RC              | %RC              |               |   |
| 1, 2 Dichlorob    | enzene-d4       | (70 - 130)         | 104%              | 106%             | 103%             | 104%             | 105%             | 104%             |               |   |

ND - Not Detected; below method detection limit

 $MDL - Method\ Detection\ Limit$ 

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

### **QA/QC REPORT**

GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| LOG NO. OC CO      | 1        |        |       |      |       |       |        | RPD |
|--------------------|----------|--------|-------|------|-------|-------|--------|-----|
| Econo: Qo co       | NC   CON | IC MS  | % MS  | MSD  | % MSD | RPD   | % ACP  | ACP |
| LN05588 20130521 N | D 22.    | 0 18.3 | 83.2% | 18.9 | 85.9% | 3.2%  | 70-130 | 30  |
| LN05659 20130521 N | D 22.    | 0 23.1 | 105%  | 18.0 | 81.8% | 24.8% | 70-130 | 30  |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130521 | 5/22/2013     | 22.0        | 27.5   | 125    | 70 - 130         |
| Gasoline | 20130521 | 5/22/2013     | 22.0        | 18.7   | 85.0   | 70 - 130         |
|          |          |               |             |        |        |                  |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan Ph 4/13

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE      | DATE     | · · · · · · · · · · · · · · · · · · · |             |         | INSTR.  |           |          |
|-----------------|-------------|------------|-----------|----------|---------------------------------------|-------------|---------|---------|-----------|----------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMI                                  | PLE DESCRIF | TION    | ID      | RUN LOG/I | ВАТСН    |
| LN05740         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |                                       | KLF-3-10    |         | AG gas  | 2013      | 0522     |
| LN05741         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |                                       | KLF-3-15    |         | AG gas  | 2013      | 0522     |
| LN05742         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |                                       | KLF-3-20    |         | AG gas  | 2013      | 0522     |
| LN05743         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |                                       | KLF-3-25    |         | AG gas  | 2013      | 0522     |
| LN05744         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |                                       | KLF-3-30    |         | AG gas  | 2013      | 0522     |
| LN05745         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |                                       | KLF-3-35    |         | AG gas  | 2013      | 0522     |
| LN05746         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |                                       | KLF-3-40    |         | AG gas  | 2013      | 0522     |
|                 |             |            |           |          |                                       |             |         |         |           |          |
|                 |             | MDL/PQL    | MB        | LN05740  | LN05741                               | LN05742     | LN05743 | LN05744 | LN05745   | LN05746  |
| ,               |             | mg/kg      | mg/kg     | mg/kg    | mg/kg                                 | mg/kg       | mg/kg   | mg/kg   | mg/kg     | mg/kg    |
| Dilution Factor | r           | 11         | 1         | 1        | 20**                                  | 1           | 1       | 11      | 1         | 1        |
| Gasoline (GRC   | 0)          | 1.1 / 5.5  | ND        | ND       | ND                                    | ND          | ND      | ND      | ND        | ND       |
| Quality C       | ontrol Data |            |           |          |                                       |             |         |         |           |          |
| Surrogate/Inter | mal Std.    | % ACP      | % RC      | %RC      | %RC                                   | %RC         | %RC     | %RC     | %RC       | %RC_     |
| 1, 2 Dichlorob  | enzene-d4   | (70 - 130) | 105%      | 105%     | 103%                                  | 103%        | 105%    | 103%    | 102%      | 102%     |
|                 |             |            |           |          |                                       |             |         | -       | ·         | <u> </u> |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*\*</sup> Sample was analyzed at higher dilution; Sample extract was either highly colored or exhibiting high turbidity

MDL / PQL for samples analyzed at higher dilutions computed as MDL/PQL (dilution x1) multiplied by the dilution factor

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE      | DATE     |         |             |         | INSTR.  |               |
|-----------------|-------------|------------|-----------|----------|---------|-------------|---------|---------|---------------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMI    | PLE DESCRIF | TION    | D       | RUN LOG/BATCH |
| LN05747         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |         | KLF-3-45    |         | AG gas  | 20130522      |
| LN05748         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |         | KLF-3-50    |         | AG gas  | 20130522      |
| LN05749         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 | ,       | KLF-3-55    |         | AG gas  | 20130522      |
| LN05750         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 |         | KLF-3-60    |         | AG gas  | 20130522      |
| LN05751         | 05/15/13    | 05/15/13   | 05/16/13  | 05/22/13 | :<br>:  | KLF-3-65    |         | AG gas  | 20130522      |
|                 |             |            |           |          |         |             |         |         |               |
|                 |             | MDL/PQL    | МВ        | LN05747  | LN05748 | LN05749     | LN05750 | LN05751 |               |
|                 |             | mg/kg      | mg/kg     | mg/kg    | mg/kg   | mg/kg       | mg/kg   | mg/kg   |               |
| Dilution Factor | r           | 1          | 1         | 1        | 1       | 1           | 1       | 1       |               |
| Gasoline (GRC   | D)          | 1.1 / 5.5  | ND        | ND       | ND      | ND          | ND      | ND      |               |
| Quality C       | ontrol Data |            |           |          |         |             |         |         | <u>.</u>      |
| Surrogate/Inter | rnal Std.   | % ACP      | % RC      | %RC      | %RC     | %RC         | %RC     | %RC_    |               |
| 1, 2 Dichlorob  | enzene-d4   | (70 - 130) | 105%      | 102%     | 100%    | 103%        | 104%    | 103%    |               |
| <u>-</u> .      |             |            |           |          |         | :           |         |         | !             |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## **QA/QC REPORT**

GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| SAMPLE  | BATCH    | SAMPLE   | SPIKE | <del></del> | <del></del> |      |       |             | <del></del>     |           |
|---------|----------|----------|-------|-------------|-------------|------|-------|-------------|-----------------|-----------|
| LOG NO. | QC       | CONC     | CONC  | MS          | % MS        | MSD  | % MSD | n n n       | MS/MSD          | RPD       |
| LN05749 | 20130522 | ND       | 22.0  | 28.4        | 129%        | 26.6 | 121%  | RPD<br>6.5% | % ACP<br>70-130 | ACP<br>30 |
| <u></u> |          | <u> </u> |       | i           |             |      |       |             | , 0 130         |           |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8646

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | DEGY H. T.  | 101 === | <del></del>      |
|----------|----------|---------------|-------------|-------------|---------|------------------|
| Gasoline | 20130522 | 5/22/2013     | 22.00       | RESULT 27.9 | % REC.  | Acceptable Range |
| <u></u>  |          |               |             | 21.9        | 127     | 70 - 130         |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE      | DATE     |         | 1000       |         | INSTR.  | 33.00    |         |
|-----------------|-------------|------------|-----------|----------|---------|------------|---------|---------|----------|---------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMI    | PLE DESCRI | TION    | ID      | RUN LOG/ | BATCH   |
| LN05796         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-5    |         | AG gas  | 2013     | 30523   |
| LN05797         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-10   |         | AG gas  | 2013     | 30523   |
| LN05798         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-15   |         | AG gas  | 2013     | 30523   |
| LN05799         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-20   |         | AG gas  | 2013     | 30523   |
| LN05800         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-25   |         | AG gas  | 2013     | 30523   |
| LN05801         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-30   |         | AG gas  | 2013     | 30523   |
| LN05802         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-35   |         | AG gas  | 2013     | 30523   |
|                 |             |            |           |          |         |            |         |         |          |         |
|                 |             | MDL / PQL  | MB        | LN05796  | LN05797 | LN05798    | LN05799 | LN05800 | LN05801  | LN05802 |
|                 |             | mg/kg      | mg/kg     | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   | mg/kg    | mg/kg   |
| Dilution Facto  | r           | 1          | 1         | 1        | 1       | 1          | 1       | 1       | 1        | 1       |
| Gasoline (GRO   | D)          | 1.1 / 5.5  | ND        | ND       | ND      | ND         | ND      | ND      | ND       | ND      |
| Quality C       | ontrol Data |            |           |          |         |            |         |         |          |         |
| Surrogate/Inter | rnal Std.   | % ACP      | % RC      | %RC      | %RC     | %RC        | %RC     | %RC     | %RC      | %RC     |
| 1, 2 Dichlorob  | enzene-d4   | (70 - 130) | 108%      | 107%     | 104%    | 104%       | 101%    | 112%    | 112%     | 108%    |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE      | DATE     |         |            |         | INSTR.  |          |         |
|-----------------|-------------|------------|-----------|----------|---------|------------|---------|---------|----------|---------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMI    | PLE DESCRI | PTION   | ID .    | RUN LOG/ | BATCH   |
| LN05803         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-40   |         | AG gas  | 2013     | 30523   |
| LN05804         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-45   |         | AG gas  | 2013     | 30523   |
| LN05805         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-50   |         | AG gas  | 2013     | 30523   |
| LN05806         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-55   |         | AG gas  | 2013     | 30523   |
| LN05807         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-60   |         | AG gas  | 2013     | 30523   |
| LN05808         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-65   |         | AG gas  | 2013     | 30523   |
| LN05809         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-5-70   |         | AG gas  | 2013     | 30523   |
|                 |             |            |           |          |         |            |         |         |          |         |
|                 |             | MDL/PQL    | MB        | LN05803  | LN05804 | LN05805    | LN05806 | LN05807 | LN05808  | LN05809 |
|                 |             | mg/kg      | mg/kg     | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   | mg/kg    | mg/kg   |
| Dilution Factor | r           | 1          | 1         | 1        | 1       | 1          | 1       | 1       | 1        | 1       |
| Gasoline (GRO   | D)          | 1.1 / 5.5  | ND        | ND       | ND      | ND         | ND      | ND      | ND       | ND      |
| Quality C       | ontrol Data |            |           |          |         |            |         |         |          |         |
| Surrogate/Inter | mal Std.    | % ACP      | % RC      | %RC      | %RC     | %RC        | %RC     | %RC     | %RC      | %RC     |
| 1, 2 Dichlorob  | enzene-d4   | (70 - 130) | 108%      | 110%     | 111%    | 111%       | 109%    | 106%    | 104%     | 104%    |
|                 |             |            |           |          |         |            |         |         |          |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE         | DATE         | DATE       | DATE      | DATE     | on enclosic vil |             |         | INSTR.  |          |         |
|----------------|--------------|------------|-----------|----------|-----------------|-------------|---------|---------|----------|---------|
| LOG NO.        | SAMPLED      | RECEIVED   | EXTRACTED | ANALYZED | SAMI            | PLE DESCRII | TION    | ID.     | RUN LOG/ | BATCH   |
| LN05810        | 05/16/13     | 05/17/13   | 05/17/13  | 05/23/13 |                 | KLF-4-5     |         | AG gas  | 2013     | 30523   |
| LN05811        | 05/16/13     | 05/17/13   | 05/17/13  | 05/23/13 |                 | KLF-4-10    |         | AG gas  | 2013     | 30523   |
| LN05812        | 05/16/13     | 05/17/13   | 05/17/13  | 05/23/13 |                 | KLF-4-15    |         | AG gas  | 2013     | 30523   |
| LN05813        | 05/16/13     | 05/17/13   | 05/17/13  | 05/23/13 |                 | KLF-4-20    |         | AG gas  | 2013     | 30523   |
| LN05814        | 05/16/13     | 05/17/13   | 05/17/13  | 05/23/13 |                 | KLF-4-25    |         | AG gas  | 2013     | 30523   |
| LN05815        | 05/16/13     | 05/17/13   | 05/17/13  | 05/23/13 |                 | KLF-4-30    |         | AG gas  | 2013     | 30523   |
| LN05816        | 05/16/13     | 05/17/13   | 05/17/13  | 05/23/13 |                 | KLF-4-35    |         | AG gas  | 2013     | 30523   |
|                |              |            |           |          |                 |             |         |         |          |         |
|                |              | MDL/PQL    | MB        | LN05810  | LN05811         | LN05812     | LN05813 | LN05814 | LN05815  | LN05816 |
|                |              | mg/kg      | mg/kg     | mg/kg    | mg/kg           | mg/kg       | mg/kg   | mg/kg   | mg/kg    | mg/kg   |
| Dilution Facto | r            | 1          | 1         | 11       | 1               | 1           | 1       | 1       | 1        | 1       |
| Gasoline (GR   | O)           | 1.1 / 5.5  | ND        | ND       | ND              | ND          | ND      | ND      | ND       | ND      |
| Quality C      | Control Data |            |           |          |                 |             |         | :       |          |         |
| Surrogate/Inte | rnal Std.    | % ACP      | % RC      | %RC      | %RC             | %RC         | %RC     | %RC     | %RC      | %RC     |
| 1, 2 Dichlorob | enzene-d4    | (70 - 130) | 108%      | 103%     | 104%            | 107%        | 102%    | 106%    | 103%     | 106%    |
|                |              |            |           | <u>-</u> |                 | !           | :       |         |          |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

**Project: FIGUEROA PUMPING STATION** 

| SAMPLE          | DATE        | DATE       | DATE      | DATE     |         |            |         | INSTR.  |          |         |
|-----------------|-------------|------------|-----------|----------|---------|------------|---------|---------|----------|---------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAM     | PLE DESCRI | PTION   | 1D      | RUN LOG/ | ВАТСН   |
| LN05817         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-4-40   | 1       | AG gas  | 201:     | 30523   |
| LN05818         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-4-45   |         | AG gas  | 2013     | 30523   |
| LN05819         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-4-50   | ***     | AG gas  | 2013     | 30523   |
| LN05820         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-4-55   |         | AG gas  | 2013     | 30523   |
| LN05821         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 | _       | KLF-4-60   |         | AG gas  | 2013     | 30523   |
| LN05822         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-4-65   |         | AG gas  | 2013     | 30523   |
| LN05823         | 05/16/13    | 05/17/13   | 05/17/13  | 05/23/13 |         | KLF-4-70   |         | AG gas  | 2013     | 30523   |
|                 |             |            |           |          |         |            |         |         |          |         |
|                 |             | MDL/PQL    | MB        | LN05817  | LN05818 | LN05819    | LN05820 | LN05821 | LN05822  | LN05823 |
|                 |             | mg/kg      | mg/kg     | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   | mg/kg    | mg/kg   |
| Dilution Factor |             | 1          | 1         | _ 1      | 1       | 1          | 1       | 1       | 1        | 1       |
| Gasoline (GRO   | ))          | 1.1 / 5.5  | ND        | ND       | ND      | ND         | ND      | ND      | ND       | ND      |
| Quality Co      | ontrol Data |            |           |          |         |            |         |         |          |         |
| Surrogate/Inter | nal Std.    | % ACP      | % RC      | %RC      | %RC     | %RC        | %RC     | %RC     | %RC      | %RC     |
| 1, 2 Dichlorobe | enzene-d4   | (70 - 130) | 108%      | 105%     | 107%    | 104%       | 105%    | 106%    | 105%     | 105%    |
|                 | <u></u>     |            |           |          |         |            |         | -       |          |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

### **QA/QC REPORT**

GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| SAMPLE  | ВАТСН    | SAMPLE | SPIKE | ļ    |      |      |       |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS | MSD  | % MSD | RPD  | % ACP  | ACP |
| LN05823 | 20130523 | ND     | 22.0  | 27.5 | 125% | 27.5 | 125%  | 0.0% | 70-130 | 30  |
|         |          |        |       |      |      |      |       |      | ,      |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130523 | 5/23/2013     | 22.0        | 27.5   | 125    | 70 - 130         |
|          |          |               |             |        |        |                  |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan Ph 6/4/13

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE           | DATE           | DATE       | DATE      | DATE      |          |              |         | INSTR,  |         |          |
|------------------|----------------|------------|-----------|-----------|----------|--------------|---------|---------|---------|----------|
| LOG NO.          | SAMPLED        | RECEIVED   | EXTRACTED | ANALYZED  | SAM      | PLE DESCRI   | PTION   | ID      | RUN LOG | /BATCU   |
| LN05904          | 05/20/13       | 05/20/13   | 05/20/13  | 05/23/13  |          | KLF - 7 - 5  |         | AG gas  | i       | 30523    |
| LN05905          | 05/20/13       | 05/20/13   | 05/20/13  | 05/23/13  |          | KLF - 7 - 10 | )       | AG gas  | †       | 30523    |
| LN05906          | 05/20/13       | 05/20/13   | 05/20/13  | 05/23/13  | i        | KLF - 7 - 1. |         | AG gas  | -       | 30523    |
| LN05907          | 05/20/13       | 05/20/13   | 05/20/13  | 05/23/13  |          | KLF - 7 - 20 |         | AG gas  |         | 30523    |
| LN05908          | 05/20/13       | 05/20/13   | 05/20/13  | 05/23/13  | <u>-</u> | KLF - 7 - 2: | 5       | AG gas  | T       | 30523    |
| LN05909          | 05/20/13       | 05/20/13   | 05/20/13  | 05/23/13  |          | KLF - 7 - 30 | )       | AG gas  | _       | 30523    |
| LN05910          | 05/20/13       | 05/20/13   | 05/20/13  | 05/23/13  | <u>-</u> | KLF - 7 - 35 |         | AG gas  |         | 30523    |
|                  | — <del> </del> |            |           |           |          |              |         | 110 840 | 2013    | 50323    |
|                  |                | MDL / PQL  | MB        | LN05904   | LN05905  | LN05906      | LN05907 | LN05908 | LN05909 | 7 NO5010 |
| <u> </u>         |                | mg/kg      | mg/kg     | mg/kg     | mg/kg    | mg/kg        | mg/kg   | mg/kg   | mg/kg   | mg/kg    |
| Dilution Factor  | <u></u>        | 1          | 1         | 1         | 1        | 1            | 1       | 1       | 1       | 1        |
| Gasoline (GRO    | )              | 1.1 / 5.5  | ND        | ND        | ND       | ND           | ND      | ND      | ND      | ND       |
| Quality Co       | ontrol Data    | ļ          |           | <br> <br> |          |              |         |         |         |          |
| Surrogate/Interr | nal Std.       | % ACP      | % RC      | %RC       | %RC      | %RC          | %RC     | %RC     |         | %RC      |
| 1, 2 Dichlorobe  | nzene-d4       | (70 - 130) | 108%      | 106%      | 106%     | 107%         | 106%    | 105%    | 107%    | 107%     |
|                  | <u> </u>       |            |           |           |          |              |         |         |         |          |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMI         | LE DESCRIE   | TION    | INSTR.<br>ID | RUN LOG/ | ВАТСН   |
|-------------------|-----------------|------------------|-------------------|------------------|--------------|--------------|---------|--------------|----------|---------|
| LN05911           | 05/20/13        | 05/20/13         | 05/20/13          | 05/23/13         |              | KLF - 7 - 40 | )       | AG gas       | 2013     | 30523   |
| LN05912           | 05/20/13        | 05/20/13         | 05/20/13          | 05/23/13         |              | KLF - 7 - 45 | ;       | AG gas       | 2013     | 30523   |
| LN05913           | 05/20/13        | 05/20/13         | 05/20/13          | 05/23/13         |              | KLF - 7 - 50 | 1       | AG gas       | 2013     | 30523   |
| LN05914           | 05/20/13        | 05/20/13         | 05/21/13          | 05/28/13         |              | KLF - 7 - 55 |         | AG gas       | 2013     | 30528   |
| LN05915           | 05/20/13        | 05/20/13         | 05/21/13          | 05/28/13         |              | KLF - 7 - 60 |         | AG gas       | 2013     | 30528   |
| LN05916           | 05/20/13        | 05/20/13         | 05/21/13          | 05/28/13         | KLF - 7 - 65 |              |         | AG gas       | 2013     | 30528   |
| LN05917           | 05/20/13        | 05/20/13         | 05/21/13          | 05/28/13         | KLF - 7 - 70 |              |         | AG gas       | 2013     | 30528   |
|                   |                 |                  |                   |                  |              |              |         |              |          |         |
|                   |                 | MDL/PQL          | MB                | LN05911          | LN05912      | LN05913      | LN05914 | LN05915      | LN05916  | LN05917 |
|                   |                 | mg/kg            | mg/kg             | mg/kg            | mg/kg        | mg/kg        | mg/kg   | mg/kg        | mg/kg    | mg/kg   |
| Dilution Factor   |                 | 1                | 1                 | 1                | 1            | 1            | 1       | 1            | 1        | 1       |
| Gasoline (GRO)    |                 | 1.1 / 5.5        | ND ND             | ND               | ND           | ND           | ND      | ND           | ND       | ND      |
| Quality Cor       | ntrol Data_     |                  |                   |                  |              |              |         |              |          |         |
| Surrogate/Interna | al Std.         | % ACP            | % RC              | %RC              | %RC          | %RC          | %RC     | %RC          | %RC      | %RC     |
| 1, 2 Dichloroben  | zene-d4         | (70 - 130)       | 108%              | 106%             | 107%         | 108%         | 110%    | 110%         | 110%     | 110%    |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## **QA/QC REPORT**

GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| SAMPLE  | ВАТСН    | SAMPLE | SPIKE |      |       |      |       |       | MS/MSD | RPD |
|---------|----------|--------|-------|------|-------|------|-------|-------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS  | MSD  | % MSD | RPD   | % ACP  | ACP |
| LN05922 | 20130528 | ND     | 22.0  | 21.3 | 96.8% | 16.3 | 74.1% | 26.6% | 70-130 | 30  |
| LN05823 | 20130523 | ND     | 22.0  | 27.5 | 125%  | 27.5 | 125%  | 0.0%  | 70-130 | 30  |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

## II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130528 | 5/28/2013     | 22.0        | 26.2   | 119    | 70 - 130         |
| Gasoline | 20130523 | 5/23/2013     | 22.0        | 27.5   | 125    | 70 - 130         |
|          |          |               |             | _      | _      |                  |

Analyzed by

Reviewed by

B. Estrada

R. Gentallan
Res 6/12/13

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE           | DATE        | DATE       | DATE      | DATE        |            |             |         | INSTR.   |                                                  |         |
|------------------|-------------|------------|-----------|-------------|------------|-------------|---------|----------|--------------------------------------------------|---------|
| LOG NO.          | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED    | SAM        | PLE DESCRI  | PTION   | ID       | RUN LOG                                          | /ВАТСН  |
| LN05918          | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13    | <br> -<br> | KLF- 6 - 5  |         | AG gas   |                                                  | 30528   |
| LN05919          | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13    | -          | KLF- 6 - 10 | )       | AG gas   |                                                  | 30528   |
| LN05920          | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13    | ,,,,       | KLF- 6 - 15 | ;       | AG gas   | ·                                                | 30528   |
| LN05921          | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13    |            | KLF- 6 - 20 |         | AG gas   | <del>                                     </del> | 30528   |
| LN05922          | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13    |            | KLF- 6 - 25 |         | AG gas   | 1                                                | 30528   |
| LN05923          | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13    |            | KLF- 6 - 30 |         | AG gas   |                                                  | 30528   |
| LN05924          | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13    | <u>.</u>   | KLF- 6 - 35 |         | AG gas   | <del>-</del>                                     | 30528   |
|                  |             |            |           | · · · · · · |            |             |         | : NO gas | 201.                                             |         |
|                  |             | MDL / PQL  | МВ        | LN05918     | LN05919    | LN05920     | LN05921 | LN05922  | LN05923                                          | LN05924 |
| ļ                |             | mg/kg      | mg/kg     | mg/kg       | mg/kg      | mg/kg       | mg/kg   | mg/kg    | mg/kg                                            | mg/kg   |
| Dilution Factor  |             | 1          | 1         | 1           | 1          | 1           | 1       | 1        | 1                                                | 1       |
| Gasoline (GRO    | )           | 1.1 / 5.5  | ND        | ND          | ND         | ND          | ND      | ND       | ND                                               | ND      |
| Quality Co       | ontrol Data |            | !         |             |            |             |         |          |                                                  |         |
| Surrogate/Intern | nal Std.    | % ACP      | % RC      | %RC         | %RC        | %RC         | %RC     | %RC      | %RC                                              | %RC     |
| 1, 2 Dichlorobe  | nzene-d4    | (70 - 130) | 112%      | 111%        | 111%       | 110%        | 109%    | 110%     | 110%                                             | 109%    |
|                  |             |            |           |             |            |             |         |          |                                                  |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE         | DATE       | DATE      | DATE     |             |             |          | INSTR.     |           |         |
|-----------------|--------------|------------|-----------|----------|-------------|-------------|----------|------------|-----------|---------|
| LOG NO.         | SAMPLED      | RECEIVED   | EXTRACTED | ANALYZED | SAMI        | LE DESCRIE  | MOITY    | ID.        | RUN LOG/  | BATCH   |
| LN05925         | 05/20/13     | 05/20/13   | 05/21/13  | 05/28/13 |             | KLF- 6 - 40 |          | AG gas     | 2013      | 30528   |
| LN05926         | 05/20/13     | 05/20/13   | 05/21/13  | 05/28/13 |             |             | AG gas   | 2013       | 30528     |         |
| LN05927         | 05/20/13     | 05/20/13   | 05/21/13  | 05/28/13 | KLF- 6 - 50 |             | AG gas   | 2013       | 30528     |         |
| LN05928         | 05/20/13     | 05/20/13   | 05/21/13  | 05/28/13 | KLF- 6 - 55 |             | AG gas   | 2013       | 30528     |         |
| LN05929         | 05/20/13     | 05/20/13   | 05/21/13  | 05/28/13 | KLF- 6 - 60 |             | AG gas   | 2013       | 30528     |         |
| LN05930         | 05/20/13     | 05/20/13   | 05/21/13  | 05/28/13 |             | KLF- 6 - 65 |          | AG gas     | 2013      | 30528   |
| LN05931         | 05/20/13     | 05/20/13   | 05/21/13  | 05/28/13 | KLF- 6 - 70 |             | AG gas   | 2013       | 30528     |         |
|                 |              |            |           |          |             |             |          |            |           |         |
|                 |              | MDL/PQL    | MB        | LN05925  | LN05926     | LN05927     | LN05928  | LN05929    | LN05930   | LN05931 |
|                 |              | mg/kg      | mg/kg     | mg/kg    | mg/kg       | mg/kg       | mg/kg    | mg/kg      | mg/kg     | mg/kg   |
| Dilution Facto  | r            | 1          | 1         | 11       | 1           | 1           | 1        | 1          | 1         | 1       |
| Gasoline (GRO   | D)           | 1.1 / 5.5  | ND        | ND       | ND          | ND          | ND       | ND         | ND        | ND      |
| Quality C       | Control Data |            |           |          |             |             |          | !<br>!<br> |           | :       |
| Surrogate/Inter | mal Std.     | % ACP      | % RC      | %RC      | %RC         | %RC         | %RC      | %RC        | %RC       | %RC     |
| 1, 2 Dichlorob  | enzene-d4    | (70 - 130) | 112%      | 110%     | 110%        | 110%        | 110%     | 111%       | 109%      | 111%    |
|                 |              |            | :<br>     |          |             |             | <u> </u> |            | <u>l_</u> | !       |

ND - Not Detected; below method detection limit

 $MDL - Method\ Detection\ Limit$ 

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

### QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

| mg/kg |
|-------|
|-------|

| SAMPLE  |          |      | SPIKE |      |       |      |       |       | MS/MSD | RPD |
|---------|----------|------|-------|------|-------|------|-------|-------|--------|-----|
| LOG NO. | QC       | CONC | CONC  | MS   | % MS  | MSD  | % MSD | RPD   | % ACP  | ACP |
| LN05922 | 20130528 | ND   | 22.0  | 21.3 | 96.8% | 16.3 | 74.1% | 26.6% | 70-130 | 30  |
|         |          |      |       | i    |       |      |       |       |        |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE<br>Gasoline | ВАТСН QС | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|---------------------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline            | 20130528 | 5/28/2013     | 22.0        | 26.2   | 119    | 70 - 130         |
|                     |          |               |             | i      |        |                  |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan
As 6/12/13

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE      | DATE     |                    | INSTR. |               |
|-----------------|-------------|------------|-----------|----------|--------------------|--------|---------------|
| LOG NO.         | SAMPLED     | RECEIVED   | EXTRACTED | ANALYZED | SAMPLE DESCRIPTION | ID     | RUN LOG/BATCH |
| LN05932         | 05/20/13    | 05/20/13   | 05/21/13  | 05/28/13 | SOIL DRUM PROFILE  | AG gas | 20130528      |
|                 |             |            |           |          |                    |        |               |
|                 |             |            |           |          |                    |        | 7/2           |
|                 |             |            |           |          |                    |        |               |
|                 |             |            |           |          |                    |        |               |
|                 |             |            |           |          |                    |        |               |
|                 |             |            |           |          |                    |        |               |
|                 |             | 1          | <u> </u>  |          |                    |        | <u> </u>      |
|                 |             | MDL / PQL  | MB        | LN05932  |                    |        |               |
|                 |             | mg/kg      | mg/kg     | mg/kg    |                    |        |               |
| Dilution Facto  | <u>r</u>    | 1          | 1         | 1        |                    |        |               |
| Gasoline (GRO   | D)          | 1.1 / 5.5  | ND        | ND       |                    |        |               |
|                 |             |            |           |          |                    |        |               |
| Quality C       | ontrol Data |            |           |          |                    |        |               |
|                 |             | <u> </u>   |           |          |                    |        |               |
| Surrogate/Inter | rnal Std.   | % ACP      | % RC      | %RC      |                    |        |               |
| 1, 2 Dichlorob  | enzene-d4   | (70 - 130) | 112%      | 130%     |                    |        |               |
|                 |             | <u> </u>   |           |          |                    |        | <u> </u>      |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## **QA/QC REPORT**

GRO (Gasoline Range Organics)

Sample Matrix: SOIL

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit: mg/kg

| SAMPLE   | BATCH    | SAMPLE | SPIKE |      |       | <u></u> |       | ······ | MS/MSD | RPD |
|----------|----------|--------|-------|------|-------|---------|-------|--------|--------|-----|
| LOG NO.  | QC       | CONC   | CONC  | MS   | % MS  | MSD     | % MSD | RPD    | % ACP  | ACP |
| LN05922  | 20130528 | ND     | 22.0  | 21.3 | 96.8% | 16.3    | 74.1% | 26.6%  | 70-130 | 30  |
| <u> </u> |          |        |       |      |       |         |       |        |        |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

## II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | ВАТСН QС | DATE ANALYZED | SPIKE CONC. | RESULT | ∣% REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|---------|------------------|
| Gasoline | 20130528 | 5/28/2013     | 22.0        | 26,2   | 119     | 70 - 130         |
|          |          |               |             |        |         | <u> </u>         |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan, LL 6/12/13

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE     |         |                    |              | INSTR.   |               |
|-----------------|-------------|------------|----------|---------|--------------------|--------------|----------|---------------|
| LOG NO.         | SAMPLED     | RECEIVED   | ANALYZED |         | SAMPLE DESCRIPTION | )N           | ID       | RUN LOG/BATCH |
| LN05577         | 05/13/13    | 05/13/13   | 05/17/13 |         | QCEB               |              | AG gas   | 20130517      |
|                 |             |            |          |         |                    |              |          |               |
|                 | ,           |            |          |         |                    |              |          |               |
|                 |             |            |          |         |                    |              |          |               |
|                 |             |            |          |         |                    |              |          | <u> </u>      |
|                 | •           |            |          |         |                    |              |          |               |
|                 |             |            |          |         |                    |              |          |               |
|                 | ·           | 1          |          | W. W    |                    |              | ·        |               |
|                 |             | MDL / PQL  | MB       | LN05577 |                    |              |          |               |
|                 |             | mg/L       | mg/L     | mg/L    | <u> </u>           | <del>_</del> |          |               |
| Dilution Factor |             | 1          | 1        | 1       |                    | ,            |          |               |
| Gasoline (GRO   | )           | 0.04 / 0.2 | ND       | ND      |                    |              |          |               |
|                 |             |            |          |         |                    |              |          |               |
| Quality Co      | ontrol Data |            |          |         |                    |              |          |               |
|                 |             |            |          |         |                    |              |          |               |
| Surrogate/Inter | nal Std.    | % ACP      | % RC     | %RC     |                    |              | <u> </u> |               |
| 1, 2 Dichlorobe | enzene-d4   | (70 - 130) | 123%     | 110%    |                    |              | :        |               |
|                 |             | -          |          |         |                    |              | !        |               |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

### QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit: mg/L

| SAMPLE  | ВАТСН    | SAMPLE | SPIKE | İ    |      |      |       |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS | MSD  | % MSD | RPD  | % ACP  | ACP |
| LN05577 | 20130517 | ND     | 1.00  | 1.28 | 128% | 1.30 | 130%  | 1.6% | 70-130 | 30  |
|         |          |        |       |      |      |      |       |      | -      |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8646

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130517 | 5/17/2013     | 1.00        | 0.72   | 72.0   | 70 - 130         |
|          |          |               |             |        |        |                  |

Analyzed by

Reviewed by

B. Estrada

R. Gentallan Ph/E/4/13

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE            |            |             |                 |                                              | INSTR.   |               |
|-----------------|-------------|------------|-----------------|------------|-------------|-----------------|----------------------------------------------|----------|---------------|
| LOG NO.         | SAMPLED     | RECEIVED   | ANALYZED        |            | SAMPLE DESC | CRIPTION        |                                              | ID       | RUN LOG/BATCH |
| LN05646         | 05/14/13    | 05/14/13   | 05/17/13        |            | QCEI        | 3               |                                              | AG gas   | 20130517      |
| LN05660         | 05/14/13    | 05/14/13   | 05/17/13        | QCFB       |             |                 |                                              | AG gas   | 20130517      |
|                 |             |            |                 |            |             |                 |                                              | :        |               |
|                 |             |            |                 |            |             |                 | <b></b>                                      |          | :             |
|                 |             |            |                 |            |             | <del>"-</del> " |                                              |          |               |
|                 |             |            | <del>,,</del> . |            | 7**         | <del></del>     | <del></del>                                  | -        |               |
|                 |             | <u>:</u> : |                 | v. <u></u> |             |                 |                                              | ļ        | <u> </u>      |
|                 |             | MDL / PQL  | МВ              | LN05646    | LN05660     |                 | i                                            | :        |               |
|                 |             | mg/L       | mg/L            | mg/L       | mg/L        |                 |                                              | į        |               |
| Dilution Factor | г           | 1          | 1               | 1          | 1           |                 |                                              |          |               |
| Gasoline (GRC   | ))          | 0.04 /0.2  | ND              | ND         | ND          |                 |                                              |          |               |
|                 |             |            |                 |            |             |                 |                                              |          |               |
| Quality C       | ontrol Data |            |                 |            |             |                 |                                              |          |               |
| Surrogate/Inter | rnal Std    | % ACP      | % RC            | %RC        | %RC         |                 | i                                            |          |               |
| 1, 2 Dichlorob  | <del></del> | (70 - 130) | 123%            | 111%       | 109%        |                 | <u>:                                    </u> | <u> </u> |               |
| 1,2 5 6 110 100 |             | (70 - 130) | 12370           | 11170      | 10770       |                 |                                              |          | ļ             |
| <u> </u>        |             |            |                 |            |             |                 | <u> </u>                                     | ·        | :             |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

## QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/L

| SAMPLE  | SAMPLE BATCH SAMPLE SPIKE |      |      |      |      |      |       | MS/MSD | RPD    |     |
|---------|---------------------------|------|------|------|------|------|-------|--------|--------|-----|
| LOG NO. | QC                        | CONC | CONC | MS   | % MS | MSD  | % MSD | RPD    | % ACP  | ACP |
| LN05577 | 20130517                  | ND   | 1.00 | 1.28 | 128% | 1.30 | 130%  | 1.6%   | 70-130 | 30  |
|         |                           | i    |      |      |      |      |       |        |        | -   |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8646

| ANALYTE  | BATCH QC | DATE ANALYZED  | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|----------------|-------------|--------|--------|------------------|
| Gasoline | 20130517 | 5/17/2013 1.00 |             | 0.72   | 72.0   | 70 - 130         |
|          |          |                |             |        |        |                  |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE     |                                                   |            |        |               | INSTR. | 180                                          |
|-----------------|-------------|------------|----------|---------------------------------------------------|------------|--------|---------------|--------|----------------------------------------------|
| LOG NO.         | SAMPLED     | RECEIVED   | ANALYZED | 1 No. 1 No. 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SAMPLE DE: | ID     | RUN LOG/BATCH |        |                                              |
| LN05739         | 05/15/13    | 05/15/13   | 05/17/13 |                                                   | QCI        | AG gas | 20130517      |        |                                              |
| LN05752         | 05/15/13    | 05/15/13   | 05/17/13 |                                                   | QCI        | FB     |               | AG gas | 20130517                                     |
|                 |             |            |          |                                                   |            |        |               |        |                                              |
|                 |             |            |          |                                                   |            |        |               |        |                                              |
|                 |             |            |          | <u> </u>                                          |            |        |               |        |                                              |
|                 |             |            |          |                                                   |            |        |               |        |                                              |
|                 | <u></u>     |            |          |                                                   |            |        |               |        |                                              |
|                 |             |            |          |                                                   |            |        |               | I      |                                              |
|                 |             | MDL / PQL  | MB       | LN05739                                           | LN05752    |        |               |        |                                              |
|                 |             | mg/L       | mg/L     | mg/L                                              | mg/L       |        | <del></del>   |        |                                              |
| Dilution Factor | r           | 1          | 1        | 1                                                 | 1          |        |               |        | :                                            |
| Gasoline (GRC   | ))          | 0.04 / 0.2 | ND       | ND                                                | ND         |        |               |        | !                                            |
|                 |             |            |          |                                                   |            |        |               |        | :                                            |
| Quality C       | ontrol Data |            |          |                                                   |            |        |               |        | :                                            |
|                 |             |            |          |                                                   | ·          | :      |               |        | <u>                                     </u> |
| Surrogate/Inter | nal Std.    | % ACP      | % RC     | %RC                                               | %RC        |        |               |        |                                              |
| 1, 2 Dichlorob  | enzene-d4   | (70 - 130) | 123%     | 110%                                              | 111%       |        |               |        | i ·                                          |
|                 |             |            |          |                                                   | <u> </u>   |        |               |        |                                              |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

### QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/L

| SAMPLE  | BATCH    | SAMPLE | SPIKE |      |      |      |       |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS | MSD  | % MSD | RPD  | % ACP  | ACP |
| LN05577 | 20130517 | ND     | 1.00  | 1.28 | 128% | 1.30 | 130%  | 1.6% | 70-130 | 30  |
|         |          |        |       |      |      |      |       |      |        |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

 $RPD = Relative\ Percent\ Difference$ 

ACP = Acceptable Range of Percent

### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8646

| ANALYTE  | İ | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|---|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | į | 20150517 | 5/17/2013     | 1.00        | 0.72   | 72.0   | 70 - 130         |
|          | 1 |          |               |             |        |        |                  |

Analyzed by Reviewed by B. Estrada

R. Gentallan Bb 6/19/13

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE        |         |           |           |   | INSTR.      |               |
|-----------------|-------------|------------|-------------|---------|-----------|-----------|---|-------------|---------------|
| LOG NO.         | SAMPLED     | RECEIVED   | ANALYZED    |         | SAMPLE DE | SCRIPTION |   | ID          | RUN LOG/BATCH |
| LN05824         | 05/16/13    | 05/17/13   | 05/28/13    |         | QC        | FB        |   | AG gas      | 20130528      |
| LN05825         | 05/16/13    | 05/17/13   | 05/28/13    |         | QC        | EB        |   | AG gas      | 20130528      |
|                 |             |            | N-1-1-1-1   |         |           |           |   |             |               |
|                 |             |            | :           |         |           |           |   |             |               |
|                 |             |            |             |         |           |           |   |             | ····          |
|                 |             |            |             |         |           |           |   |             |               |
| ·               |             |            |             |         |           |           |   | <u></u>     |               |
| ·               |             |            | <del></del> |         |           | 1         |   |             |               |
|                 |             | MDL / PQL  | MB          | LN05824 | LN05825   | <br>      |   |             |               |
|                 |             | mg/L       | mg/L        | mg/L    | mg/L      |           | ļ |             |               |
| Dilution Factor |             | 1          | 1           | 1       | 1         |           |   |             |               |
| Gasoline (GRC   | ))          | 0.04 / 0.2 | ND          | ND      | ND        |           |   |             |               |
|                 |             |            |             |         |           |           |   | !<br>!<br>! |               |
| Quality C       | ontrol Data | ;<br>[     |             |         |           |           |   |             |               |
|                 |             | <u> </u>   |             |         |           |           |   |             |               |
| Surrogate/Inter | nal Std.    | % ACP      | % RC        | %RC     | %RC       |           |   |             |               |
| 1, 2 Dichlorobe | enzene-d4   | (70 - 130) | 110%        | 110%    | 112%      |           |   |             |               |
|                 |             |            |             |         |           |           |   |             |               |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

### QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

mg/L

Reporting Unit:

| SAMPLE  | BATCH    | SAMPLE | SPIKE |      |       |      |       |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|-------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS  | MSD  | % MSD | RPD  | % ACP  | ACP |
| LN06129 | 20130528 | ND     | 1.0   | 0.99 | 99.0% | 0.92 | 92.0% | 7.3% | 70-130 | 30  |
|         |          |        |       |      |       |      |       | -    |        |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8646

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130528 | 5/28/2013     | 1.00        | 0.79   | 79.0   | 70 - 130         |
|          |          |               |             |        |        | -                |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan [L] 6/19/13

## ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

| SAMPLE          | DATE        | DATE       | DATE     |         |           |           |  | INSTR. |                                       |
|-----------------|-------------|------------|----------|---------|-----------|-----------|--|--------|---------------------------------------|
| LOG NO.         | SAMPLED     | RECEIVED   | ANALYZED |         | SAMPLE DE | SCRIPTION |  | Œ      | RUN LOG/BATCH                         |
| LN05901         | 05/20/13    | 05/20/13   | 05/28/13 |         | QC        | EB        |  | AG gas | 20130528                              |
| LN05902         | 05/20/13    | 05/20/13   | 05/28/13 |         | QCFB      |           |  | AG gas | 20130528                              |
|                 |             | !          |          |         |           |           |  |        |                                       |
|                 |             |            |          |         |           |           |  | :      |                                       |
|                 |             |            |          |         | <u> </u>  |           |  |        |                                       |
|                 |             |            |          |         | T         |           |  |        |                                       |
|                 |             | MDL/PQL    | MB       | LN05901 | LN05902   |           |  |        | :                                     |
|                 |             | mg/L       | mg/L     | mg/L    | mg/L      |           |  |        |                                       |
| Dilution Factor | •           | 1          | 1        | 1       | 1         |           |  |        |                                       |
| Gasoline (GRC   | ))          | 0.04 /0.2  | ND       | ND      | ND        | <u> </u>  |  |        |                                       |
| Quality Co      | ontrol Data |            |          |         |           |           |  |        |                                       |
| Surrogate/Inter | nal Std.    | % ACP      | % RC     | %RC     | %RC       |           |  |        | · · · · · · · · · · · · · · · · · · · |
| 1, 2 Dichlorobe | enzene-d4   | (70 - 130) | 110%     | 110%    | 110%      |           |  |        |                                       |
|                 |             |            |          |         |           |           |  | !<br>  |                                       |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

### QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: WATER

Project: FIGUEROA PUMPING STATION

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/L

| SAMPLE  | BATCH    | SAMPLE | SPIKE |      |       |      |       |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|-------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS  | MSD  | % MSD | RPD  | % ACP  | ACP |
| LN06129 | 20130528 | ND     | 1.0   | 0.99 | 99.0% | 0.92 | 92.0% | 7.3% | 70-130 | 30  |
|         |          |        |       |      |       |      |       |      |        |     |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8646

| ANALYTE  | BATCH QC | DATE ANALYZED |      |      |      | Acceptable Range |
|----------|----------|---------------|------|------|------|------------------|
| Gasoline | 20130528 | 5/28/2013     | 1.00 | 0.79 | 79.0 | 70 - 130         |
|          |          | !             |      | İ    | :    |                  |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan DL 6/19/13

## ATTACHMENT #5

Polychlorinated Biphenyls (PCBs) EPA Method 8082 Soil

## CITY OF LOS ANGELES, DEPARTMENT OF WATER & POWER ENVIRONMENTAL LABORATORY

#### CASE NARRATIVE

#### PROJECT: FIGUEROA PUMPING STATION

### METHOD 8082 PBCs (Polychlorinated Biphenyls)

#### 1. Holding Time

Analysis met holding time criteria.

#### 2. Method Blank

Laboratory blank soil was used as method blank. There was no contamination detected at reporting level.

#### 3. Lab Control Sample

Recoveries were within QC limits

#### 4 Surrogate Recovery

Recoveries were within QC limits.

#### 5. Matrix Spike/Matrix Spike Duplicate

Sample LN05932 was spiked with PCB-1242 and PCB-1260 for MS/MSD. Recoveries met QC criteria.

#### 7. Calibration

Initial calibration was performed at five different concentrations for PCB-1016, PCB-1221, PCB-1232, PCB-1242, PCB-1248, PCB-1254, and PCB-1260. The percent Relative Standard Deviation (% RSD) were all within 15%. Continuing calibration standards were analyzed at 10 samples interval for PCB-1242 and PCB-1260, and at 30 samples interval for PCB-1016, PCB-1221, PCB-1232, PCB-1248, and PCB-1254.

#### 7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. There was no PCB detected on this sample.

#### ENVIRONMENTAL LABORATORY DATA REPORT

# ANALYTICAL RESULT FOR PCBs by EPA600/SR-94/112/8082 (Polychlorinated Biphenyls)

Sample Matrix: Soil (Low Level)

| LABORATORY     | DATE      | DATE      | DATE       | DATE      |                    |
|----------------|-----------|-----------|------------|-----------|--------------------|
| LOG NO.        | SAMPLED   | RECEIVED  | EXTRACTECD | ANALYZED  | SAMPLE DESCRIPTION |
| LN05932        | 5/20/2013 | 5/20/2013 | 5/21/2013  | 5/22/2013 | SOIL DRUM PROFILE  |
|                |           |           | ·          |           |                    |
|                |           |           |            |           | _                  |
|                |           |           |            |           |                    |
|                |           |           |            |           |                    |
|                |           |           |            |           |                    |
|                |           |           | 1          |           |                    |
| <del></del>    |           | MDL/PQL   | LN05932    |           |                    |
| PARAMETERS     |           | (mg/kg)   | (mg/kg)    |           |                    |
| PCB - 1016     |           | 0.07/0.1  | ND         |           |                    |
| PCB - 1221     |           | 0.07/0.2  | ND         |           |                    |
| PCB - 1232     |           | 0.07/0.2  | ND         |           |                    |
| PCB - 1242     |           | 0.07/0.2  | ND         |           |                    |
| PCB - 1248     |           | 0.07/0.2  | ND         |           |                    |
| PCB - 1254     |           | 0.07/0.2  | ND         |           |                    |
| PCB - 1260     |           | 0.07/0.2  | ND         |           |                    |
| SURROGATE PARA | METERS    | QC LIMIT  | % Recovery |           |                    |
|                |           | %         |            |           |                    |
|                |           |           |            |           |                    |
| DECACHLOROBIPH | IENYL     | 70 - 130  | 118        |           |                    |

MDL - Method Detection Limit

ND - Not Detected; below method detection limit

Analyst: D. Wong

Reviewed by: 16 6/4/13

COC: 13-1234 Page 2 of 3

Project Name:

LADWP Figueroa PS

### QA/QC Report

I. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

ANALYTICAL METHOD:

USEPA 600/SR-94/112

USEPA 8082

DATE ANALYZED: 05/22/13 BATCH #: 52113 LAB SAMPLE I.D.: LN05932

UNIT: mg/kg

|   | PARAMETERS | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS | (DUP)<br>SPIKE<br>CONC | MSD  | %MSD | RPD | MS/MSD<br>% REC.<br>LIMIT | %<br>RPD<br>LIMIT |
|---|------------|------------------|---------------|------|-----|------------------------|------|------|-----|---------------------------|-------------------|
| Γ | PCB-1242   | 0.0              | 25.0          | 21.6 | 86  | 25.0                   | 22.7 | 91   | 5%  | 70 - 130                  | 30                |
|   | PCB-1260   | 0.0              | 25.0          | 24.7 | 99  | 25.0                   | 28.0 | 112  | 13% | 70 - 130                  | 30                |

MS - Matrix Spike MSD - Matrix Spike Dupllicate %MS - Percent Recovery of Matrix Spike RPD - Relative Percent Difference
%MSD - Percent Recovery of Matrix Spike Duplicate

Reviewed by: A 6/4/13

COC: 13-1234 Page 3 of 3

Project Name: LADWP Figueroa PS

### II. Laboratory Control Check Sample (LCS)

DATE ANALYZED: 05/22/13 ANALYTICAL METHOD: USEPA 600/SR-94/112

BATCH No. 052113 UNIT: mg/kg USEPA 8082

|            | 4081 |      | LCS1              |     | LCS2   |     |            |
|------------|------|------|-------------------|-----|--------|-----|------------|
|            |      | TRUE | alitak dalah Karl | %   |        | %   | ACCEPTANCE |
| PARAMETERS |      | CONC | RESULT            | RC. | RESULT | RC. | LIMITS (%) |
| PCB - 1242 |      | 25.0 | 22.4              | 90  | NA     | NA  | 80 - 120   |
| PCB - 1260 |      | 25.0 | 25.2              | 101 | NA     | NA  | 80 - 120   |

%RC - Percent Recovery NA - Not Analyzed Batch - ten samples per batch

Reviewed by: Al 6/4/13

## **ATTACHMENT #6**

Metals/Mercury EPA Method 6010B/7471 Soil

### CITY OF LOS ANGELES, DEPARTMENT OF WATER & POWER ENVIRONMENTAL LABORATORY

#### CASE NARRATIVE

PROJECT: FIGUEROA PUMPING STATION

### METHOD 6010B/7471 **METALS**

#### 1. Holding Time

Analysis met holding time criteria.

#### 2. Blank Spike/Blank Spike Duplicate

Spiked blank soil was analyzed in duplicate. Recoveries were within QC limits.

#### Lab Control Sample 3.

Laboratory control sample (certified QC soil sample) was analyzed in every batch. Recoveries were within QC acceptable limits.

#### Calibration 4.

Initial calibration was performed at five different concentrations. The percent relative standard and the continuing calibration check standards met QC criteria..

#### 5. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. Sample results were below TTLC limits.

#### ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-1234

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B Sample Matrix: SOIL

#### PROJECT: FIGUEROA PUMPING STATION

| LABORATORY   | DATE    | DATE     | DATE          |                    |        |       |                |   |  |  |
|--------------|---------|----------|---------------|--------------------|--------|-------|----------------|---|--|--|
| LOG NO.      | SAMPLED | RECEIVED | ANALYZED      | SAMPLE DESCRIPTION |        |       |                |   |  |  |
| LN05932      | 5/20/13 | 5/20/13  | 5/28/13       | SOIL DRUM PROFILE  |        |       |                |   |  |  |
|              |         |          |               |                    |        |       |                |   |  |  |
|              |         |          |               |                    |        |       |                |   |  |  |
|              |         |          |               |                    |        |       | -              |   |  |  |
|              |         |          |               |                    |        |       |                |   |  |  |
|              |         | 1        | 1             |                    |        |       |                |   |  |  |
|              | LIMIT   | LIMIT    |               |                    |        | T     |                | T |  |  |
| METAL        | TTLC    | STLC     | METHOD        | MDL                | RL     | D. F. | LN05932        |   |  |  |
|              | (mg/kg) | (mg/l)   | METHOD        |                    |        |       | mg/kg          |   |  |  |
| Antimony     | 500     | 15       | 6010B         | 1.0                | 5.0    | 1     | 2.04J          |   |  |  |
| Arsenic      | 500     | 5        | 6010B         | 2.6                | 13.0   | 1     | ND             |   |  |  |
| Barium       | 10000   | 100      | 6010B         | 3.7                | 18.5   | 1     | 76.0           |   |  |  |
| Beryllium    | 75      | 0.75     | 6010B         | 0.7                | 3.50   | 1     | ND             |   |  |  |
| Cadmium      | 100     | 1        | 6010B         | 0.6                | 3.0    | 1     | 1. <b>29</b> J |   |  |  |
| Chromium (T) | 500     | 5        | 6010B         | 1.4                | 7.0    | l     | 9.74           |   |  |  |
| Cobalt       | 8000    | 80       | 6010B         | 1.0                | 5.0    | 1     | 7.01           |   |  |  |
| Copper       | 2500    | 25       | 6010B         | 1.6                | 8.0    | l     | 6.66J          |   |  |  |
| Lead         | 1000    | 5        | 6010B         | 0.9                | 4.5    | 1     | 7.78           |   |  |  |
| Molybdenum   | 3500    | 350      | 6010B         | 0.3                | 1.5    | 1     | ND             |   |  |  |
| Nickel       | 2000    | 20       | 6010B         | 0.6                | 3.0    | 1     | 11.1           |   |  |  |
| Selenium     | 100     | 1        | 6010B         | 1.6                | 8.0    | 1     | ND             |   |  |  |
| Silver       | 500     | 5        | 6010 <b>B</b> | 1.5                | 7.5    | 1     | ND             |   |  |  |
| Thallium     | 700     | 7        | 6010B         | 1.0                | 5.0    | 1     | ND             |   |  |  |
| Vanadium     | 2400    | 24       | 6010B         | 1.8                | 9.00   | 1     | 26.6           |   |  |  |
| Zinc         | 5000    | 250      | 6010B         | 1.9                | 9.50   | 1     | 34.3           |   |  |  |
| Mercury      | 20      | 0.2      | 7471          | 0.00002            | 0.0001 | t     | 0.0320         |   |  |  |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: KC/YC

## II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 05/28/13

ANALYTICAL

USEPA 6010B

SUPPLY SOURCE: VHG

LAB LCS I.D.:

Q8732

LOT NUMBER:

201-0040

UNIT: (Circle One) (mg/kg)

mg/L

|              | LCS RESULTS | TRUE VALUE | %        | Acceptable Range |
|--------------|-------------|------------|----------|------------------|
| METAL        | mg/kg       | mg/kg      | Recovery | % Recovery       |
| Antimony     | 39.9        | 80.0       | 50       | 48 - 84          |
| Arsenic      | 291         | 400        | 73       | 70 - 130         |
| Barium       | 289         | 400        | 72       | 70 - 130         |
| Beryllium    | 6.7         | 10.0       | 67       | 70 - 130         |
| Cadmium      | 7.4         | 10.0       | 74       | 70 - 130         |
| Chromium (T) | 57.8        | 80.0       | 72       | 70 - 130         |
| Cobalt       | 29.5        | 40.0       | 74       | 70 - 130         |
| Copper       | 57.2        | 80.0       | 72       | 70 - 130         |
| Lead         | 58.5        | 80.0       | 73       | 70 - 130         |
| Molybdenum   |             | <u></u>    |          |                  |
| Nickel       | 57.9        | 80.0       | 72       | 70 - 130         |
| Selenium     | 133         | 200        | 67       | 70 - 130         |
| Silver       | 7.4         | 10.0       | 74       | 70 - 130         |
| Thallium     | 62.6        | 80.0       | 78       | 70 - 130         |
| Vanadium     | 65.0        | 80.0       | 81       | 70 - 130         |
| Zinc         | 131         | 200        | 66       | 70 - 130         |
|              |             |            |          |                  |

Analyst: KC

Reviewed by: 8 7/25/13

### QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 05/28/13

ANALYTICAL METHOD

USEPA 6010B

BATCH #:

(LN05932)

LAB SAMPLE I.D.: BLANK SOIL

UNIT: (Circle One) (mg/kg)

mg/L

|              | SAMPLE | SPIKE |      |      | (DUP)<br>SPIKE |      |      |      | BS/BSD<br>% REC. | RPD   |
|--------------|--------|-------|------|------|----------------|------|------|------|------------------|-------|
| METAL        | RESULT | CONC  | BS   | %BS  | CONC           | BSD  | %BSD | RPD  | LIMIT            | LIMIT |
| Antimony     | ND     | 200   | 89.4 | 44.7 | 200            | 92.0 | 46.0 | 2.9% | 14 - 89          | < 30  |
| Arsenic      | ND     | 200   | 142  | 71.0 | 200            | 146  | 73.0 | 2.8% | 70 - 130         | < 30  |
| Barium       |        |       |      |      |                |      |      |      |                  |       |
| Beryllium    | ND     | 200   | 133  | 66.5 | 200            | 135  | 67.5 | 1.5% | 70 - 130         | < 30  |
| Cadmium      | ND     | 200   | 134  | 67.0 | 200            | 137  | 68.5 | 2.2% | 70 - 130         | < 30  |
| Chromium (T) | ND     | 200   | 141  | 70.5 | 200            | 144  | 72.0 | 2.1% | 70 - 130         | < 30  |
| Cobalt       | ND     | 200   | 141  | 70.5 | 200            | 144  | 72.0 | 2.1% | 70 - 130         | < 30  |
| Copper       | ND     | 200   | 141  | 70.5 | 200            | 143  | 71.5 | 1.4% | 70 - 130         | < 30  |
| Lead         | 1.3    | 200   | 139  | 69.5 | 200            | 141  | 70.5 | 1.4% | 70 - 130         | < 30  |
| Molybdenum   | 0.36   | 200   | 139  | 69.5 | 200            | 142  | 71.0 | 2.1% | 70 - 130         | < 30  |
| Nickel       | 1.0    | 200   | 141  | 70.5 | 200            | 143  | 71.5 | 1.4% | 70 - 130         | < 30  |
| Selenium     | ND     | 200   | 131  | 65.5 | 200            | 133  | 66.5 | 1.5% | 70 - 130         | < 30  |
| Silver       |        |       |      |      |                |      |      |      |                  |       |
| Thallium     | ND     | 200   | 118  | 59.0 | 200            | 121  | 60.5 | 2.5% | 70 - 130         | < 30  |
| Vanadium     | 5.3    | 200   | 148  | 74.0 | 200            | 152  | 76.0 | 2.7% | 70 - 130         | < 30  |
| Zinc         | 2.2    | 200   | 132  | 66.0 | 200            | 133  | 66.5 | 0.8% | 70 - 130         | < 30  |
|              |        |       |      |      |                |      | _    |      |                  |       |

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC